ML Anthology
Authors
Search
About
Higgins, Irina
10 publications
ICLR
2023
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
Antonia Creswell
,
Murray Shanahan
,
Irina Higgins
ICLR
2021
Representation Learning for Improved Interpretability and Classification Accuracy of Clinical Factors from EEG
Garrett Honke
,
Irina Higgins
,
Nina Thigpen
,
Vladimir Miskovic
,
Katie Link
,
Sunny Duan
,
Pramod Gupta
,
Julia Klawohn
,
Greg Hajcak
NeurIPS
2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
Irina Higgins
,
Peter Wirnsberger
,
Andrew Jaegle
,
Aleksandar Botev
NeurIPS
2020
Disentangling by Subspace Diffusion
David Pfau
,
Irina Higgins
,
Alex Botev
,
Sébastien Racanière
ICLR
2020
Hamiltonian Generative Networks
Peter Toth
,
Danilo Jimenez Rezende
,
Andrew Jaegle
,
Sébastien Racanière
,
Aleksandar Botev
,
Irina Higgins
ICLR
2020
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
,
Loic Matthey
,
Andre Saraiva
,
Nicholas Watters
,
Christopher P. Burgess
,
Alexander Lerchner
,
Irina Higgins
NeurIPS
2018
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies
Alessandro Achille
,
Tom Eccles
,
Loic Matthey
,
Chris Burgess
,
Nicholas Watters
,
Alexander Lerchner
,
Irina Higgins
ICLR
2018
SCAN: Learning Hierarchical Compositional Visual Concepts
Irina Higgins
,
Nicolas Sonnerat
,
Loic Matthey
,
Arka Pal
,
Christopher P Burgess
,
Matko Bošnjak
,
Murray Shanahan
,
Matthew Botvinick
,
Demis Hassabis
,
Alexander Lerchner
ICLR
2017
Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
Irina Higgins
,
Loïc Matthey
,
Arka Pal
,
Christopher P. Burgess
,
Xavier Glorot
,
Matthew M. Botvinick
,
Shakir Mohamed
,
Alexander Lerchner
ICML
2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
Irina Higgins
,
Arka Pal
,
Andrei Rusu
,
Loic Matthey
,
Christopher Burgess
,
Alexander Pritzel
,
Matthew Botvinick
,
Charles Blundell
,
Alexander Lerchner