ML Anthology
Authors
Search
About
Hinton, Geoffrey E.
121 publications
NeurIPS
2022
A Unified Sequence Interface for Vision Tasks
Ting Chen
,
Saurabh Saxena
,
Lala Li
,
Tsung-Yi Lin
,
David J Fleet
,
Geoffrey E. Hinton
NeurIPS
2021
Canonical Capsules: Self-Supervised Capsules in Canonical Pose
Weiwei Sun
,
Andrea Tagliasacchi
,
Boyang Deng
,
Sara Sabour
,
Soroosh Yazdani
,
Geoffrey E. Hinton
,
Kwang Moo Yi
NeurIPS
2021
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
,
Levi Melnick
,
Nicholas Frosst
,
Xuezhou Zhang
,
Ben Lengerich
,
Rich Caruana
,
Geoffrey E. Hinton
NeurIPS
2020
Big Self-Supervised Models Are Strong Semi-Supervised Learners
Ting Chen
,
Simon Kornblith
,
Kevin Swersky
,
Mohammad Norouzi
,
Geoffrey E. Hinton
NeurIPS
2019
Lookahead Optimizer: K Steps Forward, 1 Step Back
Michael Zhang
,
James Lucas
,
Jimmy Ba
,
Geoffrey E. Hinton
NeurIPS
2019
Stacked Capsule Autoencoders
Adam Kosiorek
,
Sara Sabour
,
Yee Whye Teh
,
Geoffrey E. Hinton
NeurIPS
2019
When Does Label Smoothing Help?
Rafael Müller
,
Simon Kornblith
,
Geoffrey E. Hinton
NeurIPS
2018
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
,
Adam Santoro
,
Blake Richards
,
Luke Marris
,
Geoffrey E. Hinton
,
Timothy Lillicrap
ICLR
2018
Large Scale Distributed Neural Network Training Through Online Distillation
Rohan Anil
,
Gabriel Pereyra
,
Alexandre Passos
,
Robert Ormandi
,
George E. Dahl
,
Geoffrey E. Hinton
ICLR
2018
Matrix Capsules with EM Routing
Geoffrey E Hinton
,
Sara Sabour
,
Nicholas Frosst
AAAI
2018
Who Said What: Modeling Individual Labelers Improves Classification
Melody Y. Guan
,
Varun Gulshan
,
Andrew M. Dai
,
Geoffrey E. Hinton
NeurIPS
2017
Dynamic Routing Between Capsules
Sara Sabour
,
Nicholas Frosst
,
Geoffrey E. Hinton
ICLR
2017
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Noam Shazeer
,
Azalia Mirhoseini
,
Krzysztof Maziarz
,
Andy Davis
,
Quoc V. Le
,
Geoffrey E. Hinton
,
Jeff Dean
ICLR
2017
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
,
George Tucker
,
Jan Chorowski
,
Lukasz Kaiser
,
Geoffrey E. Hinton
NeurIPS
2016
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
S. M. Ali Eslami
,
Nicolas Heess
,
Theophane Weber
,
Yuval Tassa
,
David Szepesvari
,
Koray Kavukcuoglu
,
Geoffrey E. Hinton
NeurIPS
2016
Using Fast Weights to Attend to the Recent past
Jimmy Ba
,
Geoffrey E. Hinton
,
Volodymyr Mnih
,
Joel Z. Leibo
,
Catalin Ionescu
UAI
2013
Modeling Documents with Deep Boltzmann Machines
Nitish Srivastava
,
Ruslan Salakhutdinov
,
Geoffrey E. Hinton
NeurIPS
2012
A Better Way to Pretrain Deep Boltzmann Machines
Geoffrey E. Hinton
,
Ruslan Salakhutdinov
ICML
2012
Deep Lambertian Networks
Yichuan Tang
,
Ruslan Salakhutdinov
,
Geoffrey E. Hinton
ICML
2012
Deep Mixtures of Factor Analysers
Yichuan Tang
,
Ruslan Salakhutdinov
,
Geoffrey E. Hinton
NeurIPS
2012
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky
,
Ilya Sutskever
,
Geoffrey E. Hinton
ICML
2012
Learning to Label Aerial Images from Noisy Data
Volodymyr Mnih
,
Geoffrey E. Hinton
CVPR
2012
Robust Boltzmann Machines for Recognition and Denoising
Yichuan Tang
,
Ruslan Salakhutdinov
,
Geoffrey E. Hinton
MLJ
2012
Visualizing Non-Metric Similarities in Multiple Maps
Laurens van der Maaten
,
Geoffrey E. Hinton
UAI
2011
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Volodymyr Mnih
,
Hugo Larochelle
,
Geoffrey E. Hinton
ICML
2011
Generating Text with Recurrent Neural Networks
Ilya Sutskever
,
James Martens
,
Geoffrey E. Hinton
CVPR
2011
Modeling the Joint Density of Two Images Under a Variety of Transformations
Joshua M. Susskind
,
Geoffrey E. Hinton
,
Roland Memisevic
,
Marc Pollefeys
CVPR
2011
On Deep Generative Models with Applications to Recognition
Marc'Aurelio Ranzato
,
Joshua M. Susskind
,
Volodymyr Mnih
,
Geoffrey E. Hinton
JMLR
2011
Two Distributed-State Models for Generating High-Dimensional Time Series
Graham W. Taylor
,
Geoffrey E. Hinton
,
Sam T. Roweis
CVPR
2010
Dynamical Binary Latent Variable Models for 3D Human Pose Tracking
Graham W. Taylor
,
Leonid Sigal
,
David J. Fleet
,
Geoffrey E. Hinton
NeurIPS
2010
Gated SoftMax Classification
Roland Memisevic
,
Christopher Zach
,
Marc Pollefeys
,
Geoffrey E. Hinton
NeurIPS
2010
Generating More Realistic Images Using Gated MRF's
Marc'aurelio Ranzato
,
Volodymyr Mnih
,
Geoffrey E. Hinton
NeurIPS
2010
Learning to Combine Foveal Glimpses with a Third-Order Boltzmann Machine
Hugo Larochelle
,
Geoffrey E. Hinton
ECCV
2010
Learning to Detect Roads in High-Resolution Aerial Images
Volodymyr Mnih
,
Geoffrey E. Hinton
CVPR
2010
Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines
Marc'Aurelio Ranzato
,
Geoffrey E. Hinton
NeurIPS
2010
Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine
George Dahl
,
Marc'aurelio Ranzato
,
Abdel-rahman Mohamed
,
Geoffrey E. Hinton
ICML
2010
Rectified Linear Units Improve Restricted Boltzmann Machines
Vinod Nair
,
Geoffrey E. Hinton
NeurIPS
2009
3D Object Recognition with Deep Belief Nets
Vinod Nair
,
Geoffrey E. Hinton
ICML
2009
Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style
Graham W. Taylor
,
Geoffrey E. Hinton
UAI
2009
Products of Hidden Markov Models: It Takes N>1 to Tango
Graham W. Taylor
,
Geoffrey E. Hinton
NeurIPS
2009
Replicated SoftMax: An Undirected Topic Model
Geoffrey E. Hinton
,
Ruslan Salakhutdinov
ICML
2009
Using Fast Weights to Improve Persistent Contrastive Divergence
Tijmen Tieleman
,
Geoffrey E. Hinton
ICML
2009
Workshop Summary: Workshop on Learning Feature Hierarchies
Kai Yu
,
Ruslan Salakhutdinov
,
Yann LeCun
,
Geoffrey E. Hinton
,
Yoshua Bengio
NeurIPS
2009
Zero-Shot Learning with Semantic Output Codes
Mark Palatucci
,
Dean Pomerleau
,
Geoffrey E. Hinton
,
Tom M. Mitchell
NeurIPS
2008
A Scalable Hierarchical Distributed Language Model
Andriy Mnih
,
Geoffrey E. Hinton
NeurIPS
2008
Generative Versus Discriminative Training of RBMs for Classification of fMRI Images
Tanya Schmah
,
Geoffrey E. Hinton
,
Steven L. Small
,
Stephen Strother
,
Richard S. Zemel
NeurIPS
2008
Implicit Mixtures of Restricted Boltzmann Machines
Vinod Nair
,
Geoffrey E. Hinton
NeurIPS
2008
The Recurrent Temporal Restricted Boltzmann Machine
Ilya Sutskever
,
Geoffrey E. Hinton
,
Graham W. Taylor
NeurIPS
2008
Using Matrices to Model Symbolic Relationship
Ilya Sutskever
,
Geoffrey E. Hinton
NeurIPS
2007
Modeling Image Patches with a Directed Hierarchy of Markov Random Fields
Simon Osindero
,
Geoffrey E. Hinton
ICML
2007
Restricted Boltzmann Machines for Collaborative Filtering
Ruslan Salakhutdinov
,
Andriy Mnih
,
Geoffrey E. Hinton
ICML
2007
Three New Graphical Models for Statistical Language Modelling
Andriy Mnih
,
Geoffrey E. Hinton
CVPR
2007
Unsupervised Learning of Image Transformations
Roland Memisevic
,
Geoffrey E. Hinton
NeurIPS
2007
Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes
Geoffrey E. Hinton
,
Ruslan Salakhutdinov
NeurIPS
2006
Modeling Human Motion Using Binary Latent Variables
Graham W. Taylor
,
Geoffrey E. Hinton
,
Sam T. Roweis
NeurIPS
2005
Inferring Motor Programs from Images of Handwritten Digits
Vinod Nair
,
Geoffrey E. Hinton
IJCAI
2005
What Kind of Graphical Model Is the Brain?
Geoffrey E. Hinton
NeurIPS
2004
Exponential Family Harmoniums with an Application to Information Retrieval
Max Welling
,
Michal Rosen-zvi
,
Geoffrey E. Hinton
NeurIPS
2004
Multiple Relational Embedding
Roland Memisevic
,
Geoffrey E. Hinton
NeurIPS
2004
Neighbourhood Components Analysis
Jacob Goldberger
,
Geoffrey E. Hinton
,
Sam T. Roweis
,
Ruslan Salakhutdinov
JMLR
2004
Reinforcement Learning with Factored States and Actions
Brian Sallans
,
Geoffrey E. Hinton
UAI
2003
Efficient Parametric Projection Pursuit Density Estimation
Max Welling
,
Richard S. Zemel
,
Geoffrey E. Hinton
JMLR
2003
Energy-Based Models for Sparse Overcomplete Representations
Yee Whye Teh
,
Max Welling
,
Simon Osindero
,
Geoffrey E. Hinton
NeurIPS
2003
Wormholes Improve Contrastive Divergence
Max Welling
,
Andriy Mnih
,
Geoffrey E. Hinton
NeurIPS
2002
Learning Sparse Topographic Representations with Products of Student-T Distributions
Max Welling
,
Simon Osindero
,
Geoffrey E. Hinton
NeurIPS
2002
Self Supervised Boosting
Max Welling
,
Richard S. Zemel
,
Geoffrey E. Hinton
NeurIPS
2002
Stochastic Neighbor Embedding
Geoffrey E. Hinton
,
Sam T. Roweis
NeCo
2002
Training Products of Experts by Minimizing Contrastive Divergence
Geoffrey E. Hinton
UAI
2001
Discovering Multiple Constraints That Are Frequently Approximately Satisfied
Geoffrey E. Hinton
,
Yee Whye Teh
NeurIPS
2001
Global Coordination of Local Linear Models
Sam T. Roweis
,
Lawrence K. Saul
,
Geoffrey E. Hinton
NeurIPS
2001
Learning Hierarchical Structures with Linear Relational Embedding
Alberto Paccanaro
,
Geoffrey E. Hinton
AISTATS
2001
Products of Hidden Markov Models
Andrew D. Brown
,
Geoffrey E. Hinton
NeurIPS
2001
Relative Density Nets: A New Way to Combine Backpropagation with HMM's
Andrew D. Brown
,
Geoffrey E. Hinton
ICML
2000
Learning Distributed Representations by Mapping Concepts and Relations into a Linear Space
Alberto Paccanaro
,
Geoffrey E. Hinton
AAAI
2000
Modeling High-Dimensional Data by Combining Simple Experts
Geoffrey E. Hinton
NeurIPS
2000
Rate-Coded Restricted Boltzmann Machines for Face Recognition
Yee Whye Teh
,
Geoffrey E. Hinton
NeurIPS
2000
Recognizing Hand-Written Digits Using Hierarchical Products of Experts
Guy Mayraz
,
Geoffrey E. Hinton
NeCo
2000
SMEM Algorithm for Mixture Models
Naonori Ueda
,
Ryohei Nakano
,
Zoubin Ghahramani
,
Geoffrey E. Hinton
NeurIPS
2000
Using Free Energies to Represent Q-Values in a Multiagent Reinforcement Learning Task
Brian Sallans
,
Geoffrey E. Hinton
NeCo
2000
Variational Learning for Switching State-Space Models
Zoubin Ghahramani
,
Geoffrey E. Hinton
NeurIPS
1999
Learning to Parse Images
Geoffrey E. Hinton
,
Zoubin Ghahramani
,
Yee Whye Teh
NeurIPS
1999
Spiking Boltzmann Machines
Geoffrey E. Hinton
,
Andrew D. Brown
NeCo
1999
Variational Learning in Nonlinear Gaussian Belief Networks
Brendan J. Frey
,
Geoffrey E. Hinton
NeurIPS
1998
Fast Neural Network Emulation of Dynamical Systems for Computer Animation
Radek Grzeszczuk
,
Demetri Terzopoulos
,
Geoffrey E. Hinton
NeurIPS
1998
SMEM Algorithm for Mixture Models
Naonori Ueda
,
Ryohei Nakano
,
Zoubin Ghahramani
,
Geoffrey E. Hinton
NeCo
1997
A Mobile Robot That Learns Its Place
Sageev Oore
,
Geoffrey E. Hinton
,
Gregory Dudek
NeurIPS
1997
Hierarchical Non-Linear Factor Analysis and Topographic Maps
Zoubin Ghahramani
,
Geoffrey E. Hinton
NeCo
1997
Using Expectation-Maximization for Reinforcement Learning
Peter Dayan
,
Geoffrey E. Hinton
NeurIPS
1995
Does the Wake-Sleep Algorithm Produce Good Density Estimators?
Brendan J. Frey
,
Geoffrey E. Hinton
,
Peter Dayan
NeCo
1995
Learning Population Codes by Minimizing Description Length
Richard S. Zemel
,
Geoffrey E. Hinton
NeCo
1995
The Helmholtz Machine
Peter Dayan
,
Geoffrey E. Hinton
,
Radford M. Neal
,
Richard S. Zemel
NeurIPS
1995
Using Pairs of Data-Points to Define Splits for Decision Trees
Geoffrey E. Hinton
,
Michael Revow
NeurIPS
1994
An Alternative Model for Mixtures of Experts
Lei Xu
,
Michael I. Jordan
,
Geoffrey E. Hinton
NeurIPS
1994
Glove-TalkII: Mapping Hand Gestures to Speech Using Neural Networks
Sidney Fels
,
Geoffrey E. Hinton
NeurIPS
1994
Recognizing Handwritten Digits Using Mixtures of Linear Models
Geoffrey E. Hinton
,
Michael Revow
,
Peter Dayan
NeurIPS
1994
Using a Neural Net to Instantiate a Deformable Model
Christopher K. I. Williams
,
Michael Revow
,
Geoffrey E. Hinton
NeurIPS
1993
Autoencoders, Minimum Description Length and Helmholtz Free Energy
Geoffrey E. Hinton
,
Richard S. Zemel
NeurIPS
1993
Developing Population Codes by Minimizing Description Length
Richard S. Zemel
,
Geoffrey E. Hinton
COLT
1993
Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights
Geoffrey E. Hinton
,
Drew van Camp
NeCo
1993
Learning Mixture Models of Spatial Coherence
Suzanna Becker
,
Geoffrey E. Hinton
NeurIPS
1992
Feudal Reinforcement Learning
Peter Dayan
,
Geoffrey E. Hinton
NeCo
1992
Simplifying Neural Networks by Soft Weight-Sharing
Steven J. Nowlan
,
Geoffrey E. Hinton
NeurIPS
1991
Adaptive Elastic Models for Hand-Printed Character Recognition
Geoffrey E. Hinton
,
Christopher K. I. Williams
,
Michael D. Revow
NeCo
1991
Adaptive Mixtures of Local Experts
Robert A. Jacobs
,
Michael I. Jordan
,
Steven J. Nowlan
,
Geoffrey E. Hinton
NeurIPS
1991
Adaptive Soft Weight Tying Using Gaussian Mixtures
Steven J. Nowlan
,
Geoffrey E. Hinton
NeurIPS
1991
Learning to Make Coherent Predictions in Domains with Discontinuities
Suzanna Becker
,
Geoffrey E. Hinton
NeurIPS
1990
Discovering Viewpoint-Invariant Relationships That Characterize Objects
Richard S. Zemel
,
Geoffrey E. Hinton
NeurIPS
1990
Evaluation of Adaptive Mixtures of Competing Experts
Steven J. Nowlan
,
Geoffrey E. Hinton
NeCo
1990
The Bootstrap Widrow-Hoff Rule as a Cluster-Formation Algorithm
Geoffrey E. Hinton
,
Steven J. Nowlan
NeCo
1989
Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space
Geoffrey E. Hinton
NeurIPS
1989
Dimensionality Reduction and Prior Knowledge in E-Set Recognition
Kevin J. Lang
,
Geoffrey E. Hinton
NeurIPS
1989
Discovering High Order Features with Mean Field Modules
Conrad C. Galland
,
Geoffrey E. Hinton
NeurIPS
1989
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Richard S. Zemel
,
Michael Mozer
,
Geoffrey E. Hinton
NeurIPS
1988
GEMINI: Gradient Estimation Through Matrix Inversion After Noise Injection
Yann Le Cun
,
Conrad C. Galland
,
Geoffrey E. Hinton
NeurIPS
1987
Learning Representations by Recirculation
Geoffrey E. Hinton
,
James L. McClelland
AAAI
1986
Learning in Massively Parallel Nets (Panel)
Drew V. McDermott
,
Geoffrey E. Hinton
IJCAI
1985
Shape Recognition and Illusory Conjunctions
Geoffrey E. Hinton
,
Kevin J. Lang
IJCAI
1985
Symbols Among the Neurons: Details of a Connectionist Inference Architecture
David S. Touretzky
,
Geoffrey E. Hinton
AAAI
1983
Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines
Scott E. Fahlman
,
Geoffrey E. Hinton
,
Terrence J. Sejnowski
IJCAI
1981
A Parallel Computation That Assigns Canonical Object-Based Frames of Reference
Geoffrey E. Hinton
IJCAI
1981
Shape Representation in Parallel Systems
Geoffrey E. Hinton