Hjelm, R Devon

22 publications

ICLR 2025 On the Modeling Capabilities of Large Language Models for Sequential Decision Making Martin Klissarov, R Devon Hjelm, Alexander T Toshev, Bogdan Mazoure
ICLR 2024 Large Language Models as Generalizable Policies for Embodied Tasks Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie Mackraz, R Devon Hjelm, Alexander T Toshev
ICLR 2024 Poly-View Contrastive Learning Amitis Shidani, R Devon Hjelm, Jason Ramapuram, Russell Webb, Eeshan Gunesh Dhekane, Dan Busbridge
ICLR 2022 Cross-Trajectory Representation Learning for Zero-Shot Generalization in RL Bogdan Mazoure, Ahmed M Ahmed, R Devon Hjelm, Andrey Kolobov, Patrick MacAlpine
CVPR 2022 Robust Contrastive Learning Against Noisy Views Ching-Yao Chuang, R Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song
CoLLAs 2022 Test Sample Accuracy Scales with Training Sample Density in Neural Networks Xu Ji, Razvan Pascanu, R. Devon Hjelm, Balaji Lakshminarayanan, Andrea Vedaldi
ICLR 2021 Data-Efficient Reinforcement Learning with Self-Predictive Representations Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman
AAAI 2021 Object-Centric Image Generation from Layouts Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, Shikhar Sharma
NeurIPS 2021 Pretraining Representations for Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R Devon Hjelm, Philip Bachman, Aaron C. Courville
ICML 2020 An End-to-End Approach for the Verification Problem: Learning the Right Distance Joao Monteiro, Isabela Albuquerque, Jahangir Alam, R Devon Hjelm, Tiago Falk
NeurIPS 2020 Deep Reinforcement and InfoMax Learning Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, R Devon Hjelm
NeurIPSW 2020 Implicit Regularization via Neural Feature Alignment Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien
ICLRW 2019 Adversarial Mixup Resynthesizers Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R Devon Hjelm, Christopher Pal
ICLR 2019 Deep Graph Infomax Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm
ICLR 2019 Learning Deep Representations by Mutual Information Estimation and Maximization R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, Yoshua Bengio
NeurIPS 2019 Learning Representations by Maximizing Mutual Information Across Views Philip Bachman, R Devon Hjelm, William Buchwalter
CoRL 2019 Leveraging Exploration in Off-Policy Algorithms via Normalizing Flows Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, R Devon Hjelm
NeurIPS 2019 On Adversarial Mixup Resynthesis Christopher Beckham, Sina Honari, Vikas Verma, Alex M Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio, Chris Pal
AAAI 2019 On-Line Adaptative Curriculum Learning for GANs Thang Doan, João Monteiro, Isabela Albuquerque, Bogdan Mazoure, Audrey Durand, Joelle Pineau, R. Devon Hjelm
NeurIPS 2019 Unsupervised State Representation Learning in Atari Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm
ICLR 2018 Boundary Seeking GANs R Devon Hjelm, Athul Paul Jacob, Adam Trischler, Gerry Che, Kyunghyun Cho, Yoshua Bengio
ICLR 2014 Deep Learning for Neuroimaging: A Validation Study Sergey M. Plis, R. Devon Hjelm, Ruslan Salakhutdinov, Vince D. Calhoun