ML Anthology
Authors
Search
About
Hodgkinson, Liam
24 publications
TMLR
2025
ComFe: An Interpretable Head for Vision Transformers
Evelyn Mannix
,
Liam Hodgkinson
,
Howard Bondell
ICML
2025
Determinant Estimation Under Memory Constraints and Neural Scaling Laws
Siavash Ameli
,
Chris Van Der Heide
,
Liam Hodgkinson
,
Fred Roosta
,
Michael W. Mahoney
ICML
2025
Models of Heavy-Tailed Mechanistic Universality
Liam Hodgkinson
,
Zhichao Wang
,
Michael W. Mahoney
TMLR
2025
Preserving Angles Improves Feature Distillation
Evelyn Mannix
,
Liam Hodgkinson
,
Howard Bondell
NeurIPS
2025
Spectral Estimation with Free Decompression
Siavash Ameli
,
Chris van der Heide
,
Liam Hodgkinson
,
Michael W. Mahoney
UAI
2025
Temperature Optimization for Bayesian Deep Learning
Kenyon Ng
,
Chris Heide
,
Liam Hodgkinson
,
Susan Wei
NeurIPS
2025
Uncertainty Quantification with the Empirical Neural Tangent Kernel
Joseph Wilson
,
Chris van der Heide
,
Liam Hodgkinson
,
Fred Roosta
NeurIPS
2024
How Many Classifiers Do We Need?
Hyunsuk Kim
,
Liam Hodgkinson
,
Ryan Theisen
,
Michael W. Mahoney
NeurIPS
2023
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T Liang
,
Liam Hodgkinson
,
Michael W. Mahoney
NeurIPSW
2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
,
Chris van der Heide
,
Robert Salomone
,
Fred Roosta
,
Michael Mahoney
COLT
2023
Generalization Guarantees via Algorithm-Dependent Rademacher Complexity
Sarah Sachs
,
Tim Erven
,
Liam Hodgkinson
,
Rajiv Khanna
,
Umut Şimşekli
ICML
2023
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
,
Chris Van Der Heide
,
Fred Roosta
,
Michael W. Mahoney
NeurIPS
2023
When Are Ensembles Really Effective?
Ryan Theisen
,
Hyunsuk Kim
,
Yaoqing Yang
,
Liam Hodgkinson
,
Michael W. Mahoney
ICML
2022
Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows
Feynman Liang
,
Michael Mahoney
,
Liam Hodgkinson
ICML
2022
Generalization Bounds Using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
,
Umut Simsekli
,
Rajiv Khanna
,
Michael Mahoney
AISTATS
2021
Shadow Manifold Hamiltonian Monte Carlo
Chris Heide
,
Fred Roosta
,
Liam Hodgkinson
,
Dirk Kroese
UAI
2021
Geometric Rates of Convergence for Kernel-Based Sampling Algorithms
Rajiv Khanna
,
Liam Hodgkinson
,
Michael W. Mahoney
JMLR
2021
Implicit Langevin Algorithms for Sampling from Log-Concave Densities
Liam Hodgkinson
,
Robert Salomone
,
Fred Roosta
ICLR
2021
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
,
Omri Azencot
,
Alejandro Queiruga
,
Liam Hodgkinson
,
Michael W. Mahoney
ICML
2021
Multiplicative Noise and Heavy Tails in Stochastic Optimization
Liam Hodgkinson
,
Michael Mahoney
NeurIPS
2021
Noisy Recurrent Neural Networks
Soon Hoe Lim
,
N. Benjamin Erichson
,
Liam Hodgkinson
,
Michael W. Mahoney
NeurIPS
2021
Stateful ODE-Nets Using Basis Function Expansions
Alejandro Queiruga
,
N. Benjamin Erichson
,
Liam Hodgkinson
,
Michael W. Mahoney
UAI
2021
Stochastic Continuous Normalizing Flows: Training SDEs as ODEs
Liam Hodgkinson
,
Chris Heide
,
Fred Roosta
,
Michael W. Mahoney
NeurIPS
2021
Taxonomizing Local Versus Global Structure in Neural Network Loss Landscapes
Yaoqing Yang
,
Liam Hodgkinson
,
Ryan Theisen
,
Joe Zou
,
Joseph E Gonzalez
,
Kannan Ramchandran
,
Michael W. Mahoney