Hodgkinson, Liam

24 publications

TMLR 2025 ComFe: An Interpretable Head for Vision Transformers Evelyn Mannix, Liam Hodgkinson, Howard Bondell
ICML 2025 Determinant Estimation Under Memory Constraints and Neural Scaling Laws Siavash Ameli, Chris Van Der Heide, Liam Hodgkinson, Fred Roosta, Michael W. Mahoney
ICML 2025 Models of Heavy-Tailed Mechanistic Universality Liam Hodgkinson, Zhichao Wang, Michael W. Mahoney
TMLR 2025 Preserving Angles Improves Feature Distillation Evelyn Mannix, Liam Hodgkinson, Howard Bondell
NeurIPS 2025 Spectral Estimation with Free Decompression Siavash Ameli, Chris van der Heide, Liam Hodgkinson, Michael W. Mahoney
UAI 2025 Temperature Optimization for Bayesian Deep Learning Kenyon Ng, Chris Heide, Liam Hodgkinson, Susan Wei
NeurIPS 2025 Uncertainty Quantification with the Empirical Neural Tangent Kernel Joseph Wilson, Chris van der Heide, Liam Hodgkinson, Fred Roosta
NeurIPS 2024 How Many Classifiers Do We Need? Hyunsuk Kim, Liam Hodgkinson, Ryan Theisen, Michael W. Mahoney
NeurIPS 2023 A Heavy-Tailed Algebra for Probabilistic Programming Feynman T Liang, Liam Hodgkinson, Michael W. Mahoney
NeurIPSW 2023 A PAC-Bayesian Perspective on the Interpolating Information Criterion Liam Hodgkinson, Chris van der Heide, Robert Salomone, Fred Roosta, Michael Mahoney
COLT 2023 Generalization Guarantees via Algorithm-Dependent Rademacher Complexity Sarah Sachs, Tim Erven, Liam Hodgkinson, Rajiv Khanna, Umut Şimşekli
ICML 2023 Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes Liam Hodgkinson, Chris Van Der Heide, Fred Roosta, Michael W. Mahoney
NeurIPS 2023 When Are Ensembles Really Effective? Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, Michael W. Mahoney
ICML 2022 Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows Feynman Liang, Michael Mahoney, Liam Hodgkinson
ICML 2022 Generalization Bounds Using Lower Tail Exponents in Stochastic Optimizers Liam Hodgkinson, Umut Simsekli, Rajiv Khanna, Michael Mahoney
AISTATS 2021 Shadow Manifold Hamiltonian Monte Carlo Chris Heide, Fred Roosta, Liam Hodgkinson, Dirk Kroese
UAI 2021 Geometric Rates of Convergence for Kernel-Based Sampling Algorithms Rajiv Khanna, Liam Hodgkinson, Michael W. Mahoney
JMLR 2021 Implicit Langevin Algorithms for Sampling from Log-Concave Densities Liam Hodgkinson, Robert Salomone, Fred Roosta
ICLR 2021 Lipschitz Recurrent Neural Networks N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, Michael W. Mahoney
ICML 2021 Multiplicative Noise and Heavy Tails in Stochastic Optimization Liam Hodgkinson, Michael Mahoney
NeurIPS 2021 Noisy Recurrent Neural Networks Soon Hoe Lim, N. Benjamin Erichson, Liam Hodgkinson, Michael W. Mahoney
NeurIPS 2021 Stateful ODE-Nets Using Basis Function Expansions Alejandro Queiruga, N. Benjamin Erichson, Liam Hodgkinson, Michael W. Mahoney
UAI 2021 Stochastic Continuous Normalizing Flows: Training SDEs as ODEs Liam Hodgkinson, Chris Heide, Fred Roosta, Michael W. Mahoney
NeurIPS 2021 Taxonomizing Local Versus Global Structure in Neural Network Loss Landscapes Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez, Kannan Ramchandran, Michael W. Mahoney