Hoefler, Torsten

20 publications

AISTATS 2025 All Models Are Wrong, Some Are Useful: Model Selection with Limited Labels Patrik Okanovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefler, Andreas Krause, Nezihe Merve Gürel
NeurIPS 2025 HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L. Castro, Torsten Hoefler, Dan Alistarh
ICML 2024 DiffDA: A Diffusion Model for Weather-Scale Data Assimilation Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter Dominik Dueben, Torsten Hoefler
AAAI 2024 Graph of Thoughts: Solving Elaborate Problems with Large Language Models Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, Torsten Hoefler
CPAL 2024 How to Prune Your Language Model: Recovering Accuracy on the “Sparsity May Cry” Benchmark Eldar Kurtic, Torsten Hoefler, Dan Alistarh
NeurIPS 2024 QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, James Hensman
ICLR 2024 SliceGPT: Compress Large Language Models by Deleting Rows and Columns Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, James Hensman
ICLR 2024 SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression Tim Dettmers, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, Dan Alistarh
ICLR 2023 Compressing Multidimensional Weather and Climate Data into Neural Networks Langwen Huang, Torsten Hoefler
ICCV 2023 Differentiable Transportation Pruning Yunqiang Li, Jan C. van Gemert, Torsten Hoefler, Bert Moons, Evangelos Eleftheriou, Bram-Ernst Verhoef
LoG 2023 HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers Maciej Besta, Afonso Claudino Catarino, Lukas Gianinazzi, Nils Blach, Piotr Nyczyk, Hubert Niewiadomski, Torsten Hoefler
ICLR 2023 OPTQ: Accurate Quantization for Generative Pre-Trained Transformers Elias Frantar, Saleh Ashkboos, Torsten Hoefler, Dan Alistarh
NeurIPS 2022 ENS-10: A Dataset for Post-Processing Ensemble Weather Forecasts Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi, Luca Kummer, Torsten Hoefler
LoG 2022 Neural Graph Databases Maciej Besta, Patrick Iff, Florian Scheidl, Kazuki Osawa, Nikoli Dryden, Michal Podstawski, Tiancheng Chen, Torsten Hoefler
ICLR 2022 Neural Parameter Allocation Search Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, Kate Saenko
NeurIPS 2022 Spatial Mixture-of-Experts Nikoli Dryden, Torsten Hoefler
ICML 2021 ProGraML: A Graph-Based Program Representation for Data Flow Analysis and Compiler Optimizations Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P O’Boyle, Hugh Leather
JMLR 2021 Sparsity in Deep Learning: Pruning and Growth for Efficient Inference and Training in Neural Networks Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, Alexandra Peste
NeurIPS 2018 Neural Code Comprehension: A Learnable Representation of Code Semantics Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler
NeurIPS 2018 The Convergence of Sparsified Gradient Methods Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, Cedric Renggli