Hoffman, Matthew D.

22 publications

AISTATS 2023 ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images Matthew D. Hoffman, Tuan Anh Le, Pavel Sountsov, Christopher Suter, Ben Lee, Vikash K. Mansinghka, Rif A. Saurous
AISTATS 2022 Tuning-Free Generalized Hamiltonian Monte Carlo Matthew D. Hoffman, Pavel Sountsov
JMLR 2022 Underspecification Presents Challenges for Credibility in Modern Machine Learning Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley
ICML 2021 What Are Bayesian Neural Network Posteriors Really like? Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, Andrew Gordon Gordon Wilson
ICLR 2019 Music Transformer: Generating Music with Long-Term Structure Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, Douglas Eck
AISTATS 2019 The LORACs Prior for VAEs: Letting the Trees Speak for the Data Sharad Vikram, Matthew D. Hoffman, Matthew J. Johnson
NeurIPSW 2019 Transforming Recursive Programs for Parallel Execution Alexey Radul, Brian Patton, Dougal Maclaurin, Matthew D. Hoffman, Rif A. Saurous
NeurIPS 2018 Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language Matthew D. Hoffman, Matthew J Johnson, Dustin Tran
AISTATS 2018 Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models Ardavan Saeedi, Matthew D. Hoffman, Stephen J. DiVerdi, Asma Ghandeharioun, Matthew J. Johnson, Ryan P. Adams
AISTATS 2018 On the Challenges of Learning with Inference Networks on Sparse, High-Dimensional Data Rahul G. Krishnan, Dawen Liang, Matthew D. Hoffman
ICLR 2017 Deep Probabilistic Programming Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei
ICML 2017 Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo Matthew D. Hoffman
JMLR 2017 Stochastic Gradient Descent as Approximate Bayesian Inference Stephan Mandt, Matthew D. Hoffman, David M. Blei
UAI 2016 Scalable Nonparametric Bayesian Multilevel Clustering Viet Huynh, Dinh Q. Phung, Svetha Venkatesh, XuanLong Nguyen, Matthew D. Hoffman, Hung Hai Bui
ICLR 2015 Learning Activation Functions to Improve Deep Neural Networks Forest Agostinelli, Matthew D. Hoffman, Peter J. Sadowski, Pierre Baldi
AISTATS 2015 Stochastic Structured Variational Inference Matthew D. Hoffman, David M. Blei
ICLR 2014 A Generative Product-of-Filters Model of Audio Dawen Liang, Matthew D. Hoffman, Gautham J. Mysore
JMLR 2014 The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo Matthew D. Hoffman, Andrew Gelman
JMLR 2013 Stochastic Variational Inference Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley
ICML 2012 Nonparametric Variational Inference Samuel Gershman, Matthew D. Hoffman, David M. Blei
ICML 2012 Sparse Stochastic Inference for Latent Dirichlet Allocation David M. Mimno, Matthew D. Hoffman, David M. Blei
ICML 2010 Bayesian Nonparametric Matrix Factorization for Recorded Music Matthew D. Hoffman, David M. Blei, Perry R. Cook