Honavar, Vasant G

47 publications

AAAI 2025 Checking Consistency of CP-Theory Preferences in Polynomial Time Erik Rauer, Samik Basu, Vasant G. Honavar
TMLR 2025 Class Incremental Learning from First Principles: A Review Neil Ashtekar, Jingxi Zhu, Vasant G Honavar
ICLR 2025 DSPO: Direct Score Preference Optimization for Diffusion Model Alignment Huaisheng Zhu, Teng Xiao, Vasant G Honavar
ICLR 2025 On a Connection Between Imitation Learning and RLHF Teng Xiao, Yige Yuan, Mingxiao Li, Zhengyu Chen, Vasant G Honavar
ICLR 2025 SimPER: A Minimalist Approach to Preference Alignment Without Hyperparameters Teng Xiao, Yige Yuan, Zhengyu Chen, Mingxiao Li, Shangsong Liang, Zhaochun Ren, Vasant G Honavar
NeurIPS 2025 Simple Distillation for One-Step Diffusion Models Huaisheng Zhu, Teng Xiao, Shijie Zhou, Zhimeng Guo, Hangfan Zhang, Siyuan Xu, Vasant G Honavar
NeurIPS 2024 Cal-DPO: Calibrated Direct Preference Optimization for Language Model Alignment Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, Vasant G Honavar
CLeaR 2024 Causal Matching Using Random Hyperplane Tessellations Abhishek Dalvi, Neil Ashtekar, Vasant G Honavar
ICML 2024 Efficient Contrastive Learning for Fast and Accurate Inference on Graphs Teng Xiao, Huaisheng Zhu, Zhiwei Zhang, Zhimeng Guo, Charu C. Aggarwal, Suhang Wang, Vasant G Honavar
AAAI 2024 Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data Junjie Liang, Weijieying Ren, Hanifi Sahar, Vasant G. Honavar
ICML 2024 TabLog: Test-Time Adaptation for Tabular Data Using Logic Rules Weijieying Ren, Xiaoting Li, Huiyuan Chen, Vineeth Rakesh, Zhuoyi Wang, Mahashweta Das, Vasant G Honavar
NeurIPSW 2022 Variational Graph Auto-Encoders for Heterogeneous Information Network Abhishek Dalvi, Ayan Acharya, Jing Gao, Vasant G Honavar
AAAI 2021 Longitudinal Deep Kernel Gaussian Process Regression Junjie Liang, Yanting Wu, Dongkuan Xu, Vasant G. Honavar
AAAI 2020 Algorithmic Bias in Recidivism Prediction: A Causal Perspective (Student Abstract) Aria Khademi, Vasant G. Honavar
AAAI 2020 LMLFM: Longitudinal Multi-Level Factorization Machine Junjie Liang, Dongkuan Xu, Yiwei Sun, Vasant G. Honavar
WACV 2019 Improving Image Captioning by Leveraging Knowledge Graphs Yimin Zhou, Yiwei Sun, Vasant G. Honavar
IJCAI 2019 MEGAN: A Generative Adversarial Network for Multi-View Network Embedding Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, Vasant G. Honavar
AAAI 2019 Minimum Intervention Cover of a Causal Graph Saravanan Kandasamy, Arnab Bhattacharyya, Vasant G. Honavar
UAI 2017 Self-Discrepancy Conditional Independence Test Sanghack Lee, Vasant G. Honavar
UAI 2017 Towards Conditional Independence Test for Relational Data Sanghack Lee, Vasant G. Honavar
UAI 2016 A Characterization of Markov Equivalence Classes of Relational Causal Models Under Path Semantics Sanghack Lee, Vasant G. Honavar
AAAI 2016 On Learning Causal Models from Relational Data Sanghack Lee, Vasant G. Honavar
UAI 2015 Lifted Representation of Relational Causal Models Revisited: Implications for Reasoning and Structure Learning Sanghack Lee, Vasant G. Honavar
UAI 2013 Causal Transportability of Experiments on Controllable Subsets of Variables: Z-Transportability Sanghack Lee, Vasant G. Honavar
AAAI 2013 M-Transportability: Transportability of a Causal Effect from Multiple Environments Sanghack Lee, Vasant G. Honavar
IJCAI 2011 On the Utility of Curricula in Unsupervised Learning of Probabilistic Grammars Kewei Tu, Vasant G. Honavar
JAIR 2011 Representing and Reasoning with Qualitative Preferences for Compositional Systems Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar
AAAI 2011 Verifying Intervention Policies to Counter Infection Propagation over Networks: A Model Checking Approach Ganesh Ram Santhanam, Yuly Suvorov, Samik Basu, Vasant G. Honavar
AAAI 2010 Dominance Testing via Model Checking Ganesh Ram Santhanam, Samik Basu, Vasant G. Honavar
JAIR 2009 Efficient Markov Network Structure Discovery Using Independence Tests Facundo Bromberg, Dimitris Margaritis, Vasant G. Honavar
CVPRW 2009 Multiple Label Prediction for Image Annotation with Multiple Kernel Correlation Models Oksana Yakhnenko, Vasant G. Honavar
AAAI 2008 On the Decidability of Role Mappings Between Modular Ontologies Jie Bao, George Voutsadakis, Giora Slutzki, Vasant G. Honavar
AAAI 2007 A Semantic Importing Approach to Knowledge Reuse from Multiple Ontologies Jie Bao, Giora Slutzki, Vasant G. Honavar
ALT 2005 Algorithms and Software for Collaborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Information Sources Doina Caragea, Jun Zhang, Jie Bao, Jyotishman Pathak, Vasant G. Honavar
AAAI 2005 Learning Support Vector Machines from Distributed Data Sources Cornelia Caragea, Doina Caragea, Vasant G. Honavar
ICML 2003 Learning from Attribute Value Taxonomies and Partially Specified Instances Jun Zhang, Vasant G. Honavar
MLJ 2001 Introduction Vasant G. Honavar, Colin de la Higuera
MLJ 2001 Learning DFA from Simple Examples Rajesh Parekh, Vasant G. Honavar
AAAI 2000 Incremental and Distributed Learning with Support Vector Machines Doina Caragea, Adrian Silvescu, Vasant G. Honavar
ICML 1999 Simple DFA Are Polynomially Probably Exactly Learnable from Simple Examples Rajesh Parekh, Vasant G. Honavar
ALT 1997 Learning DFA from Simple Examples Rajesh Parekh, Vasant G. Honavar
AAAI 1996 An Incremental Interactive Algorithm for Regular Grammar Inference Rajesh Parekh, Vasant G. Honavar
AAAI 1996 Analysis of Utility-Theoretic Heuristics for Intelligent Adaptive Network Routing Armin R. Mikler, Vasant G. Honavar, Johnny S. Wong
AAAI 1996 Constructive Neural Network Learning Algorithms Rajesh Parekh, Jihoon Yang, Vasant G. Honavar
AAAI 1996 Experiments in Evolutionary Synthesis of Robotic Neurocontrollers Karthik Balakrishnan, Vasant G. Honavar
MLJ 1992 Neural Network Design and the Complexity of Learning (Book Review) Vasant G. Honavar
IJCAI 1989 Generation, Local Receptive Fields and Global Convergence Improve Perceptual Learning in Connectionist Networks Vasant G. Honavar, Leonard Uhr