ML Anthology
Authors
Search
About
Hoogendoorn, Mark
14 publications
TMLR
2025
Learning Task-Aware Abstract Representations for Meta-Reinforcement Learning
Louk van Remmerden
,
Zhao Yang
,
Shujian Yu
,
Mark Hoogendoorn
,
Vincent Francois-Lavet
TMLR
2025
ModernTCN Revisited: A Critical Look at the Experimental Setup in General Time Series Analysis
Önder Akacik
,
Mark Hoogendoorn
TMLR
2025
Relative Phase Equivariant Deep Neural Systems for Physical Layer Communications
Arwin Gansekoele
,
Sandjai Bhulai
,
Mark Hoogendoorn
,
Rob van der Mei
ICLR
2025
Start Smart: Leveraging Gradients for Enhancing Mask-Based XAI Methods
Buelent Uendes
,
Shujian Yu
,
Mark Hoogendoorn
TMLR
2024
Wavelet Networks: Scale-Translation Equivariant Learning from Raw Time-Series
David W. Romero
,
Erik J Bekkers
,
Jakub M. Tomczak
,
Mark Hoogendoorn
ICLR
2023
Modelling Long Range Dependencies in $N$D: From Task-Specific to a General Purpose CNN
David M Knigge
,
David W. Romero
,
Albert Gu
,
Efstratios Gavves
,
Erik J Bekkers
,
Jakub Mikolaj Tomczak
,
Mark Hoogendoorn
,
Jan-jakob Sonke
ICLR
2022
CKConv: Continuous Kernel Convolution for Sequential Data
David W. Romero
,
Anna Kuzina
,
Erik J Bekkers
,
Jakub Mikolaj Tomczak
,
Mark Hoogendoorn
ICLR
2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
David W. Romero
,
Robert-Jan Bruintjes
,
Jakub Mikolaj Tomczak
,
Erik J Bekkers
,
Mark Hoogendoorn
,
Jan van Gemert
MLJ
2022
Planning for Potential: Efficient Safe Reinforcement Learning
Floris den Hengst
,
Vincent François-Lavet
,
Mark Hoogendoorn
,
Frank van Harmelen
IJCAI
2022
Reinforcement Learning with Option Machines
Floris den Hengst
,
Vincent François-Lavet
,
Mark Hoogendoorn
,
Frank van Harmelen
ICML
2020
Attentive Group Equivariant Convolutional Networks
David Romero
,
Erik Bekkers
,
Jakub Tomczak
,
Mark Hoogendoorn
ICLR
2020
Co-Attentive Equivariant Neural Networks: Focusing Equivariance on Transformations Co-Occurring in Data
David W. Romero
,
Mark Hoogendoorn
IJCAI
2011
Modeling Situation Awareness in Human-like Agents Using Mental Models
Mark Hoogendoorn
,
Rianne van Lambalgen
,
Jan Treur
IJCAI
2007
Adaptation of Organizational Models for Multi-Agent Systems Based on Max Flow Networks
Mark Hoogendoorn