Huang, Feihu

30 publications

AISTATS 2025 Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization Feihu Huang, Chunyu Xuan, Xinrui Wang, Siqi Zhang, Songcan Chen
IJCAI 2025 Escaping Saddle Point Efficiently in Minimax and Bilevel Optimizations Wenhan Xian, Feihu Huang, Heng Huang
AAAI 2025 Faster Double Adaptive Gradient Methods Feihu Huang, Yuning Luo
ICML 2025 Generalized Smooth Bilevel Optimization with Nonconvex Lower-Level Siqi Zhang, Xing Huang, Feihu Huang
AAAI 2025 Improving Federated Domain Generalization Through Dynamical Weights Calculated from Data Influences on Global Model Update Zikun Zhou, Wen Huang, Xingyi Wang, Zhishuo Zhang, Zhun Zhang, Jian Peng, Feihu Huang
AISTATS 2024 Adaptive Federated Minimax Optimization with Lower Complexities Feihu Huang, Xinrui Wang, Junyi Li, Songcan Chen
CVPR 2024 BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional Neural Networks Shangqian Gao, Yanfu Zhang, Feihu Huang, Heng Huang
ICML 2024 Faster Adaptive Decentralized Learning Algorithms Feihu Huang, Jianyu Zhao
ICLR 2024 FedDA: Faster Adaptive Gradient Methods for Federated Constrained Optimization Junyi Li, Feihu Huang, Heng Huang
ICML 2024 Optimal Hessian/Jacobian-Free Nonconvex-PL Bilevel Optimization Feihu Huang
AISTATS 2023 AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization Feihu Huang, Xidong Wu, Zhengmian Hu
NeurIPS 2023 Communication-Efficient Federated Bilevel Optimization with Global and Local Lower Level Problems Junyi Li, Feihu Huang, Heng Huang
AAAI 2023 Faster Adaptive Federated Learning Xidong Wu, Feihu Huang, Zhengmian Hu, Heng Huang
ICLR 2023 MICN: Multi-Scale Local and Global Context Modeling for Long-Term Series Forecasting Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, Yifei Xiao
ICCV 2023 Structural Alignment for Network Pruning Through Partial Regularization Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang, Heng Huang
JMLR 2022 Accelerated Zeroth-Order and First-Order Momentum Methods from Mini to Minimax Optimization Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang
ICLR 2022 Bregman Gradient Policy Optimization Feihu Huang, Shangqian Gao, Heng Huang
ECCV 2022 Disentangled Differentiable Network Pruning Shangqian Gao, Feihu Huang, Yanfu Zhang, Heng Huang
NeurIPS 2022 Enhanced Bilevel Optimization via Bregman Distance Feihu Huang, Junyi Li, Shangqian Gao, Heng Huang
NeurIPS 2021 A Faster Decentralized Algorithm for Nonconvex Minimax Problems Wenhan Xian, Feihu Huang, Yanfu Zhang, Heng Huang
AAAI 2021 Communication-Efficient Frank-Wolfe Algorithm for Nonconvex Decentralized Distributed Learning Wenhan Xian, Feihu Huang, Heng Huang
NeurIPS 2021 Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems Feihu Huang, Xidong Wu, Heng Huang
CVPR 2021 Network Pruning via Performance Maximization Shangqian Gao, Feihu Huang, Weidong Cai, Heng Huang
NeurIPS 2021 Optimal Underdamped Langevin MCMC Method Zhengmian Hu, Feihu Huang, Heng Huang
NeurIPS 2021 SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients Feihu Huang, Junyi Li, Heng Huang
ICML 2020 Accelerated Stochastic Gradient-Free and Projection-Free Methods Feihu Huang, Lue Tao, Songcan Chen
ICML 2020 Momentum-Based Policy Gradient Methods Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang
AAAI 2019 Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization Feihu Huang, Bin Gu, Zhouyuan Huo, Songcan Chen, Heng Huang
ICML 2019 Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization Feihu Huang, Songcan Chen, Heng Huang
IJCAI 2019 Zeroth-Order Stochastic Alternating Direction Method of Multipliers for Nonconvex Nonsmooth Optimization Feihu Huang, Shangqian Gao, Songcan Chen, Heng Huang