Huang, Furong

133 publications

NeurIPS 2025 A Technical Report on “Erasing the Invisible”: The 2024 NeurIPS Competition on Stress Testing Image Watermarks Mucong Ding, Bang An, Tahseen Rabbani, Chenghao Deng, Anirudh Satheesh, Souradip Chakraborty, Mehrdad Saberi, Yuxin Wen, Kyle Rui Sang, Aakriti Agrawal, Xuandong Zhao, Mo Zhou, Mary-Anne Hartley, Lei Li, Yu-Xiang Wang, Vishal M. Patel, Soheil Feizi, Tom Goldstein, Furong Huang
ICLRW 2025 AdvBDGen: A Robust Framework for Generating Adaptive and Stealthy Backdoors in LLM Alignment Attacks Pankayaraj Pathmanathan, Udari Madhushani Sehwag, Michael-Andrei Panaitescu-Liess, Furong Huang
ICLRW 2025 AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security Zikui Cai, Shayan Shabihi, Bang An, Zora Che, Brian R. Bartoldson, Bhavya Kailkhura, Tom Goldstein, Furong Huang
ICLR 2025 Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset Yingzi Ma, Jiongxiao Wang, Fei Wang, Siyuan Ma, Jiazhao Li, Jinsheng Pan, Xiujun Li, Furong Huang, Lichao Sun, Bo Li, Yejin Choi, Muhao Chen, Chaowei Xiao
AAAI 2025 Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? Michael-Andrei Panaitescu-Liess, Zora Che, Bang An, Yuancheng Xu, Pankayaraj Pathmanathan, Souradip Chakraborty, Sicheng Zhu, Tom Goldstein, Furong Huang
ICLR 2025 Collab: Controlled Decoding Using Mixture of Agents for LLM Alignment Souradip Chakraborty, Sujay Bhatt, Udari Madhushani Sehwag, Soumya Suvra Ghosal, Jiahao Qiu, Mengdi Wang, Dinesh Manocha, Furong Huang, Alec Koppel, Sumitra Ganesh
NeurIPS 2025 Does Thinking More Always Help? Mirage of Test-Time Scaling in Reasoning Models Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh Manocha, Furong Huang, Mohammad Ghavamzadeh, Amrit Singh Bedi
CoRL 2025 FLARE: Robot Learning with Implicit World Modeling Ruijie Zheng, Jing Wang, Scott Reed, Johan Bjorck, Yu Fang, Fengyuan Hu, Joel Jang, Kaushil Kundalia, Zongyu Lin, Loïc Magne, Avnish Narayan, You Liang Tan, Guanzhi Wang, Qi Wang, Jiannan Xiang, Yinzhen Xu, Seonghyeon Ye, Jan Kautz, Furong Huang, Yuke Zhu, Linxi Fan
ICLR 2025 GenARM: Reward Guided Generation with Autoregressive Reward Model for Test-Time Alignment Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang, Sumitra Ganesh
ICCV 2025 GenFlowRL: Shaping Rewards with Generative Object-Centric Flow in Visual Reinforcement Learning Kelin Yu, Sheng Zhang, Harshit Soora, Furong Huang, Heng Huang, Pratap Tokekar, Ruohan Gao
CoRL 2025 Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models Seungjae Lee, Daniel Ekpo, Haowen Liu, Furong Huang, Abhinav Shrivastava, Jia-Bin Huang
CVPR 2025 Immune: Improving Safety Against Jailbreaks in Multi-Modal LLMs via Inference-Time Alignment Soumya Suvra Ghosal, Souradip Chakraborty, Vaibhav Singh, Tianrui Guan, Mengdi Wang, Ahmad Beirami, Furong Huang, Alvaro Velasquez, Dinesh Manocha, Amrit Singh Bedi
AAAI 2025 Is Poisoning a Real Threat to DPO? Maybe More so than You Think Pankayaraj Pathmanathan, Souradip Chakraborty, Xiangyu Liu, Yongyuan Liang, Furong Huang
TMLR 2025 Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities Zora Che, Stephen Casper, Robert Kirk, Anirudh Satheesh, Stewart Slocum, Lev E McKinney, Rohit Gandikota, Aidan Ewart, Domenic Rosati, Zichu Wu, Zikui Cai, Bilal Chughtai, Yarin Gal, Furong Huang, Dylan Hadfield-Menell
ICCV 2025 Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin Lu, Yuancheng Xu, Chung-Ching Lin, Kevin Lin, Furong Huang, Lijuan Wang
ICLRW 2025 Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension Xiyao Wang, Zhengyuan Yang, Linjie Li, Hongjin Lu, Yuancheng Xu, Chung-Ching Lin, Kevin Lin, Furong Huang, Lijuan Wang
NeurIPS 2025 SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin, Furong Huang, Lijuan Wang
AISTATS 2025 Statistical Guarantees for Lifelong Reinforcement Learning Using PAC-Bayes Theory Zhi Zhang, Chris Chow, Yasi Zhang, Yanchao Sun, Haochen Zhang, Eric Hanchen Jiang, Han Liu, Furong Huang, Yuchen Cui, Oscar Hernan Madrid Padilla
ICLR 2025 TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé Iii, Andrey Kolobov, Furong Huang, Jianwei Yang
NeurIPS 2025 ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs Xiyao Wang, Zhengyuan Yang, Chao Feng, Yuhang Zhou, Xiaoyu Liu, Yongyuan Liang, Ming Li, Ziyi Zang, Linjie Li, Chung-Ching Lin, Kevin Lin, Furong Huang, Lijuan Wang
ICLRW 2025 Why Are Web AI Agents More Vulnerable than Standalone LLMs? a Security Analysis Jeffrey Yang Fan Chiang, Seungjae Lee, Jia-Bin Huang, Furong Huang, Yizheng Chen
ICCV 2025 Zero-Shot Vision Encoder Grafting via LLM Surrogates Kaiyu Yue, Vasu Singla, Menglin Jia, John Kirchenbauer, Rifaa Qadri, Zikui Cai, Abhinav Bhatele, Furong Huang, Tom Goldstein
ICML 2024 A Linear Time and Space Local Point Cloud Geometry Encoder via Vectorized Kernel Mixture (VecKM) Dehao Yuan, Cornelia Fermuller, Tahseen Rabbani, Furong Huang, Yiannis Aloimonos
ICML 2024 ACE: Off-Policy Actor-Critic with Causality-Aware Entropy Regularization Tianying Ji, Yongyuan Liang, Yan Zeng, Yu Luo, Guowei Xu, Jiawei Guo, Ruijie Zheng, Furong Huang, Fuchun Sun, Huazhe Xu
ICML 2024 Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies Towards Equal Long-Term Benefit Rate Yuancheng Xu, Chenghao Deng, Yanchao Sun, Ruijie Zheng, Xiyao Wang, Jieyu Zhao, Furong Huang
NeurIPSW 2024 AdvBDGen: Adversarially Fortified Prompt-Specific Fuzzy Backdoor Generator Against LLM Alignment Pankayaraj Pathmanathan, Udari Madhushani Sehwag, Michael-Andrei Panaitescu-Liess, Furong Huang
ICMLW 2024 Automatic Pseudo-Harmful Prompt Generation for Evaluating False Refusals in Large Language Models Bang An, Sicheng Zhu, Ruiyi Zhang, Michael-Andrei Panaitescu-Liess, Yuancheng Xu, Furong Huang
ICLR 2024 Beyond Worst-Case Attacks: Robust RL with Adaptive Defense via Non-Dominated Policies Xiangyu Liu, Chenghao Deng, Yanchao Sun, Yongyuan Liang, Furong Huang
NeurIPS 2024 Boosting Sample Efficiency and Generalization in Multi-Agent Reinforcement Learning via Equivariance Joshua McClellan, Naveed Haghani, John Winder, Furong Huang, Pratap Tokekar
ICLR 2024 COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu, Furong Huang
NeurIPSW 2024 CSRec: Rethinking Sequential Recommendation from a Causal Perspective. Xiaoyu Liu, Jiaxin Yuan, Yuhang Zhou, Jingling Li, Furong Huang, Wei Ai
ICMLW 2024 Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? Michael-Andrei Panaitescu-Liess, Zora Che, Bang An, Yuancheng Xu, Pankayaraj Pathmanathan, Souradip Chakraborty, Sicheng Zhu, Tom Goldstein, Furong Huang
NeurIPSW 2024 Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? Michael-Andrei Panaitescu-Liess, Zora Che, Bang An, Yuancheng Xu, Pankayaraj Pathmanathan, Souradip Chakraborty, Sicheng Zhu, Tom Goldstein, Furong Huang
ICLR 2024 Decodable and Sample Invariant Continuous Object Encoder Dehao Yuan, Furong Huang, Cornelia Fermuller, Yiannis Aloimonos
ICLR 2024 DrM: Mastering Visual Reinforcement Learning Through Dormant Ratio Minimization Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo, Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé Iii, Furong Huang, Huazhe Xu
NeurIPS 2024 Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild, Tianyi Zhou, Tom Goldstein, John Langford, Anima Anandkumar, Furong Huang
NeurIPSW 2024 EnsemW2S: Can an Ensemble of LLMs Be Leveraged to Obtain a Stronger LLM? Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao Deng, Anirudh Satheesh, John Langford, Furong Huang
NeurIPS 2024 FACT or Fiction: Can Truthful Mechanisms Eliminate Federated Free Riding? Marco Bornstein, Amrit Singh Bedi, Abdirisak Mohamed, Furong Huang
ICLR 2024 Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations Yongyuan Liang, Yanchao Sun, Ruijie Zheng, Xiangyu Liu, Benjamin Eysenbach, Tuomas Sandholm, Furong Huang, Stephen Marcus McAleer
CVPR 2024 HallusionBench: An Advanced Diagnostic Suite for Entangled Language Hallucination and Visual Illusion in Large Vision-Language Models Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, Tianyi Zhou
ICMLW 2024 Is Poisoning a Real Threat to LLM Alignment? Maybe More so than You Think Pankayaraj Pathmanathan, Souradip Chakraborty, Xiangyu Liu, Yongyuan Liang, Furong Huang
NeurIPSW 2024 LSH-E Tells You What to Discard: An Adaptive Locality-Sensitive Strategy for KV Cache Compression Tahseen Rabbani, Minghui Liu, Tony O'Halloran, Ananth Sankaralingam, Mary-Anne Hartley, Furong Huang
ICLR 2024 Like Oil and Water: Group Robustness Methods and Poisoning Defenses May Be at Odds Michael-Andrei Panaitescu-Liess, Yigitcan Kaya, Sicheng Zhu, Furong Huang, Tudor Dumitras
NeurIPS 2024 Make-an-Agent: A Generalizable Policy Network Generator with Behavior-Prompted Diffusion Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, Huazhe Xu
ICML 2024 MaxMin-RLHF: Alignment with Diverse Human Preferences Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Amrit Bedi, Mengdi Wang
ICMLW 2024 MaxMin-RLHF: Towards Equitable Alignment of Large Language Models with Diverse Human Preferences Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Amrit Bedi, Mengdi Wang
NeurIPSW 2024 Model Manipulation Attacks Enable More Rigorous Evaluations of LLM Capabilities Zora Che, Stephen Casper, Anirudh Satheesh, Rohit Gandikota, Domenic Rosati, Stewart Slocum, Lev E McKinney, Zichu Wu, Zikui Cai, Bilal Chughtai, Daniel Filan, Furong Huang, Dylan Hadfield-Menell
ICLR 2024 PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback Souradip Chakraborty, Amrit Bedi, Alec Koppel, Huazheng Wang, Dinesh Manocha, Mengdi Wang, Furong Huang
ICML 2024 PRISE: LLM-Style Sequence Compression for Learning Temporal Action Abstractions in Control Ruijie Zheng, Ching-An Cheng, Hal Daumé Iii, Furong Huang, Andrey Kolobov
ICLR 2024 PerceptionCLIP: Visual Classification by Inferring and Conditioning on Contexts Bang An, Sicheng Zhu, Michael-Andrei Panaitescu-Liess, Chaithanya Kumar Mummadi, Furong Huang
NeurIPSW 2024 PoisonedParrot: Subtle Data Poisoning Attacks to Elicit Copyright-Infringing Content from Large Language Models Michael-Andrei Panaitescu-Liess, Pankayaraj Pathmanathan, Yigitcan Kaya, Zora Che, Bang An, Sicheng Zhu, Aakriti Agrawal, Furong Huang
ICML 2024 Position: On the Possibilities of AI-Generated Text Detection Souradip Chakraborty, Amrit Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, Furong Huang
ICML 2024 Position: TrustLLM: Trustworthiness in Large Language Models Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Yang Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao
ICML 2024 Premier-TACO Is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Shuang Ma, Hal Daumé Iii, Huazhe Xu, John Langford, Praveen Palanisamy, Kalyan Shankar Basu, Furong Huang
ICLR 2024 Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL Xiangyu Liu, Souradip Chakraborty, Yanchao Sun, Furong Huang
ICLR 2024 SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation Mucong Ding, Bang An, Yuancheng Xu, Anirudh Satheesh, Furong Huang
ICMLW 2024 SAIL: Self-Improving Efficient Online Alignment of Large Language Models Mucong Ding, Souradip Chakraborty, Vibhu Agrawal, Zora Che, Alec Koppel, Mengdi Wang, Amrit Bedi, Furong Huang
NeurIPS 2024 Shadowcast: Stealthy Data Poisoning Attacks Against Vision-Language Models Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, Furong Huang
ICLRW 2024 Shadowcast: Stealthy Data Poisoning Attacks Against Vision-Language Models Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, Furong Huang
NeurIPSW 2024 Shrinking the Size of Deep Extreme Multi-Label Classification Marco Bornstein, Tahseen Rabbani, Brian Joseph Gravelle, Furong Huang
NeurIPS 2024 Transfer Q-Star : Principled Decoding for LLM Alignment Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Amrit Singh Bedi, Furong Huang
ICML 2024 WAVES: Benchmarking the Robustness of Image Watermarks Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng, Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, Furong Huang
ICLRW 2024 WAVES: Benchmarking the Robustness of Image Watermarks Mucong Ding, Tahseen Rabbani, Bang An, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng, Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, Furong Huang
NeurIPSW 2023 $\texttt{PREMIER-TACO}$ Is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Shuang Ma, Hal Daumé Iii, Huazhe Xu, John Langford, Praveen Palanisamy, Kalyan Basu, Furong Huang
NeurIPS 2023 $\texttt{TACO}$: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé Iii, Furong Huang
TMLR 2023 A Survey on the Possibilities & Impossibilities of AI-Generated Text Detection Soumya Suvra Ghosal, Souradip Chakraborty, Jonas Geiping, Furong Huang, Dinesh Manocha, Amrit Bedi
NeurIPSW 2023 AutoDAN: Automatic and Interpretable Adversarial Attacks on Large Language Models Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani Nenkova, Tong Sun
NeurIPSW 2023 Beyond Worst-Case Attacks: Robust RL with Adaptive Defense via Non-Dominated Policies Xiangyu Liu, Chenghao Deng, Yanchao Sun, Yongyuan Liang, Furong Huang
ICMLW 2023 C-Disentanglement: Discovering Causally-Independent Generative Factors Under an Inductive Bias of Confounder Xiaoyu Liu, Jiaxin Yuan, Bang An, Yuancheng Xu, Yifan Yang, Furong Huang
NeurIPS 2023 C-Disentanglement: Discovering Causally-Independent Generative Factors Under an Inductive Bias of Confounder Xiaoyu Liu, Jiaxin Yuan, Bang An, Yuancheng Xu, Yifan Yang, Furong Huang
NeurIPSW 2023 COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu, Furong Huang
ICLR 2023 Certifiably Robust Policy Learning Against Adversarial Multi-Agent Communication Yanchao Sun, Ruijie Zheng, Parisa Hassanzadeh, Yongyuan Liang, Soheil Feizi, Sumitra Ganesh, Furong Huang
NeurIPS 2023 Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein
ICMLW 2023 Equal Long-Term Benefit Rate: Adapting Static Fairness Notions to Sequential Decision Making Yuancheng Xu, Chenghao Deng, Yanchao Sun, Ruijie Zheng, Xiyao Wang, Jieyu Zhao, Furong Huang
ICLR 2023 Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, Furong Huang
ICMLW 2023 Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations Yongyuan Liang, Yanchao Sun, Ruijie Zheng, Xiangyu Liu, Tuomas Sandholm, Furong Huang, Stephen Marcus McAleer
ICLR 2023 Is Model Ensemble Necessary? Model-Based RL via a Single Model with Lipschitz Regularized Value Function Ruijie Zheng, Xiyao Wang, Huazhe Xu, Furong Huang
NeurIPS 2023 Large-Scale Distributed Learning via Private On-Device LSH Tahseen Rabbani, Marco Bornstein, Furong Huang
ICML 2023 Learning Unforeseen Robustness from Out-of-Distribution Data Using Equivariant Domain Translator Sicheng Zhu, Bang An, Furong Huang, Sanghyun Hong
ICLRW 2023 Learning Unforeseen Robustness from Out-of-Distribution Data Using Equivariant Domain Translator Sicheng Zhu, Bang An, Furong Huang, Sanghyun Hong
ICML 2023 Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy Xiyao Wang, Wichayaporn Wongkamjan, Ruonan Jia, Furong Huang
ICMLW 2023 More Context, Less Distraction: Improving Zero-Shot Inference of CLIP by Inferring and Describing Spurious Features Bang An, Sicheng Zhu, Michael-Andrei Panaitescu-Liess, Chaithanya Kumar Mummadi, Furong Huang
AAAI 2023 Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning Souradip Chakraborty, Amrit Singh Bedi, Pratap Tokekar, Alec Koppel, Brian M. Sadler, Furong Huang, Dinesh Manocha
ICMLW 2023 Principal-Driven Reward Design and Agent Policy Alignment via Bilevel-RL Souradip Chakraborty, Amrit Bedi, Alec Koppel, Furong Huang, Mengdi Wang
NeurIPSW 2023 Progressively Efficient Communication Khanh Nguyen, Ruijie Zheng, Hal Daumé Iii, Furong Huang, Karthik Narasimhan
NeurIPSW 2023 RealFM: A Realistic Mechanism to Incentivize Data Contribution and Device Participation Marco Bornstein, Amrit Bedi, Anit Kumar Sahu, Furqan Khan, Furong Huang
NeurIPSW 2023 Robustness to Multi-Modal Environment Uncertainty in MARL Using Curriculum Learning Aakriti Agrawal, Rohith Aralikatti, Yanchao Sun, Furong Huang
ICLR 2023 SMART: Self-Supervised Multi-Task pretrAining with contRol Transformers Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, Ashish Kapoor
ICML 2023 STEERING : Stein Information Directed Exploration for Model-Based Reinforcement Learning Souradip Chakraborty, Amrit Bedi, Alec Koppel, Mengdi Wang, Furong Huang, Dinesh Manocha
ICLR 2023 SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication Marco Bornstein, Tahseen Rabbani, Evan Z Wang, Amrit Bedi, Furong Huang
NeurIPS 2022 Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach Kaiwen Yang, Yanchao Sun, Jiahao Su, Fengxiang He, Xinmei Tian, Furong Huang, Tianyi Zhou, Dacheng Tao
NeurIPSW 2022 Controllable Attack and Improved Adversarial Training in Multi-Agent Reinforcement Learning Xiangyu Liu, Souradip Chakraborty, Furong Huang
NeurIPSW 2022 DP-InstaHide: Data Augmentations Provably Enhance Guarantees Against Dataset Manipulations Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam H Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, Tom Goldstein
NeurIPS 2022 Efficient Adversarial Training Without Attacking: Worst-Case-Aware Robust Reinforcement Learning Yongyuan Liang, Yanchao Sun, Ruijie Zheng, Furong Huang
NeurIPS 2022 End-to-End Algorithm Synthesis with Recurrent Networks: Extrapolation Without Overthinking Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein
NeurIPSW 2022 Faster Hyperparameter Search on Graphs via Calibrated Dataset Condensation Mucong Ding, Xiaoyu Liu, Tahseen Rabbani, Furong Huang
NeurIPSW 2022 GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint Paiheng Xu, Yuhang Zhou, Bang An, Wei Ai, Furong Huang
NeurIPSW 2022 Is Model Ensemble Necessary? Model-Based RL via a Single Model with Lipschitz Regularized Value Function Ruijie Zheng, Xiyao Wang, Huazhe Xu, Furong Huang
ICMLW 2022 Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy Xiyao Wang, Wichayaporn Wongkamjan, Furong Huang
NeurIPSW 2022 Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning Souradip Chakraborty, Amrit Bedi, Alec Koppel, Pratap Tokekar, Furong Huang, Dinesh Manocha
ICLR 2022 Reinforcement Learning Under a Multi-Agent Predictive State Representation Model: Method and Theory Zhi Zhang, Zhuoran Yang, Han Liu, Pratap Tokekar, Furong Huang
NeurIPSW 2022 SMART: Self-Supervised Multi-Task pretrAining with contRol Transformers Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, Ashish Kapoor
NeurIPSW 2022 SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication Marco Bornstein, Tahseen Rabbani, Evan Z Wang, Amrit Bedi, Furong Huang
ICML 2022 Scaling-up Diverse Orthogonal Convolutional Networks by a Paraunitary Framework Jiahao Su, Wonmin Byeon, Furong Huang
NeurIPS 2022 Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity Mucong Ding, Tahseen Rabbani, Bang An, Evan Wang, Furong Huang
NeurIPSW 2022 Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity Mucong Ding, Tahseen Rabbani, Bang An, Evan Z Wang, Furong Huang
ICLR 2022 Transfer RL Across Observation Feature Spaces via Model-Based Regularization Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew E Cohen, Furong Huang
NeurIPS 2022 Transferring Fairness Under Distribution Shifts via Fair Consistency Regularization Bang An, Zora Che, Mucong Ding, Furong Huang
ICLR 2022 Tuformer: Data-Driven Design of Transformers for Improved Generalization or Efficiency Xiaoyu Liu, Jiahao Su, Furong Huang
NeurIPS 2022 Where Do Models Go Wrong? Parameter-Space Saliency Maps for Explainability Roman Levin, Manli Shu, Eitan Borgnia, Furong Huang, Micah Goldblum, Tom Goldstein
ICLR 2022 Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL Yanchao Sun, Ruijie Zheng, Yongyuan Liang, Furong Huang
NeurIPSW 2021 A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf, Furong Huang, Tom Goldstein
AAAI 2021 Are Adversarial Examples Created Equal? a Learnable Weighted Minimax Risk for Robustness Under Non-Uniform Attacks Huimin Zeng, Chen Zhu, Tom Goldstein, Furong Huang
NeurIPS 2021 Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, Tom Goldstein
ECML-PKDD 2021 MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients Chen Zhu, Yu Cheng, Zhe Gan, Furong Huang, Jingjing Liu, Tom Goldstein
AAAI 2021 TempLe: Learning Template of Transitions for Sample Efficient Multi-Task RL Yanchao Sun, Xiangyu Yin, Furong Huang
NeurIPSW 2021 Transfer RL Across Observation Feature Spaces via Model-Based Regularization Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew E Cohen, Furong Huang
NeurIPS 2021 Understanding the Generalization Benefit of Model Invariance from a Data Perspective Sicheng Zhu, Bang An, Furong Huang
NeurIPS 2021 VQ-GNN: A Universal Framework to Scale up Graph Neural Networks Using Vector Quantization Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, Tom Goldstein
ICLR 2021 Vulnerability-Aware Poisoning Mechanism for Online RL with Unknown Dynamics Yanchao Sun, Da Huo, Furong Huang
NeurIPSW 2021 Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL Yanchao Sun, Ruijie Zheng, Yongyuan Liang, Furong Huang
NeurIPS 2020 ARMA Nets: Expanding Receptive Field for Dense Prediction Jiahao Su, Shiqi Wang, Furong Huang
ICML 2020 An End-to-End Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm Chris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-Xiang Wang, Furong Huang
NeurIPS 2020 Convolutional Tensor-Train LSTM for Spatio-Temporal Learning Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, Anima Anandkumar
ICLR 2020 Sampling-Free Learning of Bayesian Quantized Neural Networks Jiahao Su, Milan Cvitkovic, Furong Huang
NeurIPSW 2020 Understanding Generalization Through Visualizations W Ronny Huang, Zeyad Emam, Micah Goldblum, Liam H Fowl, J K Terry, Furong Huang, Tom Goldstein
AISTATS 2020 Understanding Generalization in Deep Learning via Tensor Methods Jingling Li, Yanchao Sun, Jiahao Su, Taiji Suzuki, Furong Huang
UAI 2019 Guaranteed Scalable Learning of Latent Tree Models Furong Huang, Niranjan Uma Naresh, Ioakeim Perros, Robert Chen, Jimeng Sun, Anima Anandkumar
ICML 2018 Learning Deep ResNet Blocks Sequentially Using Boosting Theory Furong Huang, Jordan Ash, John Langford, Robert Schapire
COLT 2015 Escaping from Saddle Points - Online Stochastic Gradient for Tensor Decomposition Rong Ge, Furong Huang, Chi Jin, Yang Yuan
JMLR 2015 Online Tensor Methods for Learning Latent Variable Models Furong Huang, U. N. Niranjan, Mohammad Umar Hakeem, Animashree Anandkumar
JMLR 2012 High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion Animashree Anandkumar, Vincent Y.F. Tan, Furong Huang, Alan S. Willsky
NeurIPS 2012 Learning Mixtures of Tree Graphical Models Anima Anandkumar, Daniel J. Hsu, Furong Huang, Sham M. Kakade