Huang, Sandy

7 publications

NeurIPS 2024 Imitating Language via Scalable Inverse Reinforcement Learning Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jörg Bornschein, Sandy Huang, Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, Sarah Maria Elisabeth Bechtle, Jost Tobias Springenberg, Nikola Momchev, Olivier Bachem, Matthieu Geist, Martin Riedmiller
CoRL 2024 Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning Dhruva Tirumala, Markus Wulfmeier, Ben Moran, Sandy Huang, Jan Humplik, Guy Lever, Tuomas Haarnoja, Leonard Hasenclever, Arunkumar Byravan, Nathan Batchelor, Neil Sreendra, Kushal Patel, Marlon Gwira, Francesco Nori, Martin Riedmiller, Nicolas Heess
ICLR 2024 Replay Across Experiments: A Natural Extension of Off-Policy RL Dhruva Tirumala, Thomas Lampe, Jose Enrique Chen, Tuomas Haarnoja, Sandy Huang, Guy Lever, Ben Moran, Tim Hertweck, Leonard Hasenclever, Martin Riedmiller, Nicolas Heess, Markus Wulfmeier
NeurIPS 2023 Coherent Soft Imitation Learning Joe Watson, Sandy Huang, Nicolas Heess
CLeaR 2022 Learning Causal Overhypotheses Through Exploration in Children and Computational Models Eliza Kosoy, Adrian Liu, Jasmine L Collins, David Chan, Jessica B Hamrick, Nan Rosemary Ke, Sandy Huang, Bryanna Kaufmann, John Canny, Alison Gopnik
CoRL 2021 A Constrained Multi-Objective Reinforcement Learning Framework Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz, Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, Raia Hadsell
ICML 2020 A Distributional View on Multi-Objective Policy Optimization Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, Martin Riedmiller