ML Anthology
Authors
Search
About
Huang, Xiaolin
39 publications
ICML
2025
Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape
Tao Li
,
Zhengbao He
,
Yujun Li
,
Yasheng Wang
,
Lifeng Shang
,
Xiaolin Huang
MLJ
2025
MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes
Ruikai Yang
,
Mingzhen He
,
Zhenghao He
,
Youmei Qiu
,
Xiaolin Huang
AAAI
2025
ParseCaps: An Interpretable Parsing Capsule Network for Medical Image Diagnosis
Xinyu Geng
,
Jiaming Wang
,
Xiaolin Huang
,
Fanglin Chen
,
Jun Xu
ICML
2025
Primphormer: Efficient Graph Transformers with Primal Representations
Mingzhen He
,
Ruikai Yang
,
Hanling Tian
,
Youmei Qiu
,
Xiaolin Huang
ICLR
2025
Pursuing Feature Separation Based on Neural Collapse for Out-of-Distribution Detection
Yingwen Wu
,
Ruiji Yu
,
Xinwen Cheng
,
Zhengbao He
,
Xiaolin Huang
ICLR
2025
Simulating Training Dynamics to Reconstruct Training Data from Deep Neural Networks
Hanling Tian
,
Yuhang Liu
,
Mingzhen He
,
Zhengbao He
,
Zhehao Huang
,
Ruikai Yang
,
Xiaolin Huang
ECML-PKDD
2025
Stimulating Catastrophic Forgetting in Class-Wise Unlearning via UAP
Wenxing Zhou
,
Xinwen Cheng
,
Yingwen Wu
,
Ruikai Yang
,
Xiaolin Huang
NeurIPSW
2024
Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape
Tao Li
,
Zhengbao He
,
Yujun Li
,
Yasheng Wang
,
Lifeng Shang
,
Xiaolin Huang
CVPR
2024
Friendly Sharpness-Aware Minimization
Tao Li
,
Pan Zhou
,
Zhengbao He
,
Xinwen Cheng
,
Xiaolin Huang
NeurIPS
2024
Kernel PCA for Out-of-Distribution Detection
Kun Fang
,
Qinghua Tao
,
Kexin Lv
,
Mingzhen He
,
Xiaolin Huang
,
Jie Yang
ECCV
2024
Learning Scalable Model Soup on a Single GPU: An Efficient Subspace Training Strategy
Tao Li
,
Weisen Jiang
,
Fanghui Liu
,
Xiaolin Huang
,
James Kwok
TMLR
2024
Online Continual Learning via Logit Adjusted SoftMax
Zhehao Huang
,
Tao Li
,
Chenhe Yuan
,
Yingwen Wu
,
Xiaolin Huang
CVPR
2024
OrthCaps: An Orthogonal CapsNet with Sparse Attention Routing and Pruning
Xinyu Geng
,
Jiaming Wang
,
Jiawei Gong
,
Yuerong Xue
,
Jun Xu
,
Fanglin Chen
,
Xiaolin Huang
MLJ
2024
Random Fourier Features for Asymmetric Kernels
Mingzhen He
,
Fan He
,
Fanghui Liu
,
Xiaolin Huang
TMLR
2024
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
Tao Li
,
Qinghua Tao
,
Weihao Yan
,
Yingwen Wu
,
Zehao Lei
,
Kun Fang
,
Mingzhen He
,
Xiaolin Huang
NeurIPSW
2024
Towards Natural Machine Unlearning
Zhengbao He
,
Tao Li
,
Xinwen Cheng
,
Zhehao Huang
,
Xiaolin Huang
NeurIPS
2024
Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement
Zhehao Huang
,
Xinwen Cheng
,
JingHao Zheng
,
Haoran Wang
,
Zhengbao He
,
Tao Li
,
Xiaolin Huang
ACML
2023
Better Loss Landscape Visualization for Deep Neural Networks with Trajectory Information
Ruiqi Ding
,
Tao Li
,
Xiaolin Huang
NeurIPS
2023
Diffusion Representation for Asymmetric Kernels via Magnetic Transform
Mingzhen He
,
Fan He
,
Ruikai Yang
,
Xiaolin Huang
CVPRW
2023
Investigating Catastrophic Overfitting in Fast Adversarial Training: A Self-Fitting Perspective
Zhengbao He
,
Tao Li
,
Sizhe Chen
,
Xiaolin Huang
ICLR
2023
One-Pixel Shortcut: On the Learning Preference of Deep Neural Networks
Shutong Wu
,
Sizhe Chen
,
Cihang Xie
,
Xiaolin Huang
NeurIPSW
2023
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
Tao Li
,
Weihao Yan
,
Qinghua Tao
,
Zehao Lei
,
Yingwen Wu
,
Kun Fang
,
Mingzhen He
,
Xiaolin Huang
ICLR
2023
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Sizhe Chen
,
Geng Yuan
,
Xinwen Cheng
,
Yifan Gong
,
Minghai Qin
,
Yanzhi Wang
,
Xiaolin Huang
ICLR
2023
Trainable Weight Averaging: Efficient Training by Optimizing Historical Solutions
Tao Li
,
Zhehao Huang
,
Qinghua Tao
,
Yingwen Wu
,
Xiaolin Huang
MLJ
2023
Weighted Neural Tangent Kernel: A Generalized and Improved Network-Induced Kernel
Lei Tan
,
Shutong Wu
,
Wenxing Zhou
,
Xiaolin Huang
NeurIPS
2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
,
Zhehao Huang
,
Qinghua Tao
,
Yingwen Wu
,
Cihang Xie
,
Xiaolin Huang
ECCV
2022
PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry
Yu Zhang
,
Junle Yu
,
Xiaolin Huang
,
Wenhui Zhou
,
Ji Hou
CVPR
2022
Subspace Adversarial Training
Tao Li
,
Yingwen Wu
,
Sizhe Chen
,
Kun Fang
,
Xiaolin Huang
AISTATS
2021
Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures
Fanghui Liu
,
Xiaolin Huang
,
Yingyi Chen
,
Johan Suykens
MLJ
2021
Analysis of Regularized Least-Squares in Reproducing Kernel Kreĭn Spaces
Fanghui Liu
,
Lei Shi
,
Xiaolin Huang
,
Jie Yang
,
Johan A. K. Suykens
ICCVW
2021
CDAda: A Curriculum Domain Adaptation for Nighttime Semantic Segmentation
Qi Xu
,
Yinan Ma
,
Jing Wu
,
Chengnian Long
,
Xiaolin Huang
JMLR
2021
Generalization Properties of Hyper-RKHS and Its Applications
Fanghui Liu
,
Lei Shi
,
Xiaolin Huang
,
Jie Yang
,
Johan A.K. Suykens
AAAI
2020
A Generalized Framework for Edge-Preserving and Structure-Preserving Image Smoothing
Wei Liu
,
Pingping Zhang
,
Yinjie Lei
,
Xiaolin Huang
,
Jie Yang
,
Ian D. Reid
JMLR
2020
Learning Data-Adaptive Non-Parametric Kernels
Fanghui Liu
,
Xiaolin Huang
,
Chen Gong
,
Jie Yang
,
Li Li
AAAI
2020
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Fanghui Liu
,
Xiaolin Huang
,
Yudong Chen
,
Jie Yang
,
Johan A. K. Suykens
JMLR
2019
Sparse Kernel Regression with Coefficient-Based $\ell_q-$regularization
Lei Shi
,
Xiaolin Huang
,
Yunlong Feng
,
Johan A.K. Suykens
AAAI
2018
Nonlinear Pairwise Layer and Its Training for Kernel Learning
Fanghui Liu
,
Xiaolin Huang
,
Chen Gong
,
Jie Yang
,
Li Li
JMLR
2015
Learning with the Maximum Correntropy Criterion Induced Losses for Regression
Yunlong Feng
,
Xiaolin Huang
,
Lei Shi
,
Yuning Yang
,
Johan A.K. Suykens
JMLR
2014
Ramp Loss Linear Programming Support Vector Machine
Xiaolin Huang
,
Lei Shi
,
Johan A.K. Suykens