ML Anthology
Authors
Search
About
Huggins, Jonathan
12 publications
NeurIPS
2021
Challenges and Opportunities in High Dimensional Variational Inference
Akash Kumar Dhaka
,
Alejandro Catalina
,
Manushi Welandawe
,
Michael R Andersen
,
Jonathan Huggins
,
Aki Vehtari
NeurIPS
2020
Robust, Accurate Stochastic Optimization for Variational Inference
Akash Kumar Dhaka
,
Alejandro Catalina
,
Michael R Andersen
,
Måns Magnusson
,
Jonathan Huggins
,
Aki Vehtari
AISTATS
2020
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan Huggins
,
Mikolaj Kasprzak
,
Trevor Campbell
,
Tamara Broderick
AISTATS
2019
Data-Dependent Compression of Random Features for Large-Scale Kernel Approximation
Raj Agrawal
,
Trevor Campbell
,
Jonathan Huggins
,
Tamara Broderick
ICML
2019
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations
Brian Trippe
,
Jonathan Huggins
,
Raj Agrawal
,
Tamara Broderick
ICML
2019
The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions
Raj Agrawal
,
Brian Trippe
,
Jonathan Huggins
,
Tamara Broderick
NeurIPS
2018
Random Feature Stein Discrepancies
Jonathan Huggins
,
Lester Mackey
NeurIPS
2017
PASS-GLM: Polynomial Approximate Sufficient Statistics for Scalable Bayesian GLM Inference
Jonathan Huggins
,
Ryan P. Adams
,
Tamara Broderick
AISTATS
2017
Quantifying the Accuracy of Approximate Diffusions and Markov Chains
Jonathan Huggins
,
James Zou
NeurIPS
2016
Coresets for Scalable Bayesian Logistic Regression
Jonathan Huggins
,
Trevor Campbell
,
Tamara Broderick
ICML
2015
JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes
Jonathan Huggins
,
Karthik Narasimhan
,
Ardavan Saeedi
,
Vikash Mansinghka
ICML
2015
Risk and Regret of Hierarchical Bayesian Learners
Jonathan Huggins
,
Josh Tenenbaum