Hutter, Frank

164 publications

ICLRW 2025 Bayesian Approximation of RNA Folding Times Dominik Scheuer, Frederic Runge, Jörg K.H. Franke, Michael T. Wolfinger, Christoph Flamm, Frank Hutter
ICML 2025 Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks Dongwoo Lee, Dong Bok Lee, Steven Adriaensen, Juho Lee, Sung Ju Hwang, Frank Hutter, Seon Joo Kim, Hae Beom Lee
ICLR 2025 Beyond Random Augmentations: Pretraining with Hard Views Fabio Ferreira, Ivo Rapant, Jörg K.H. Franke, Frank Hutter
NeurIPS 2025 DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, Riccardo Grazzi
ICLRW 2025 DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, Riccardo Grazzi
ICLR 2025 Diffusion-Based Neural Network Weights Generation Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, Sung Ju Hwang
NeurIPS 2025 Do-PFN: In-Context Learning for Causal Effect Estimation Jake Robertson, Arik Reuter, Siyuan Guo, Noah Hollmann, Frank Hutter, Bernhard Schölkopf
NeurIPS 2025 EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Network Michael Arbel, David Salinas, Frank Hutter
ICML 2025 FairPFN: A Tabular Foundation Model for Causal Fairness Jake Robertson, Noah Hollmann, Samuel Müller, Noor Awad, Frank Hutter
AutoML 2025 Frozen Layers: Memory-Efficient Many-Fidelity Hyperparameter Optimization Timur Carstensen, Neeratyoy Mallik, Frank Hutter, Martin Rapp
NeurIPS 2025 Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics Indrashis Das, Mahmoud Safari, Steven Adriaensen, Frank Hutter
ICLR 2025 KinPFN: Bayesian Approximation of RNA Folding Kinetics Using Prior-Data Fitted Networks Dominik Scheuer, Frederic Runge, Jörg K.H. Franke, Michael T. Wolfinger, Christoph Flamm, Frank Hutter
NeurIPS 2025 Learning in Compact Spaces with Approximately Normalized Transformer Jörg K.H. Franke, Urs Spiegelhalter, Marianna Nezhurina, Jenia Jitsev, Frank Hutter, Michael Hefenbrock
TMLR 2025 Meta-Learning Population-Based Methods for Reinforcement Learning Johannes Hog, Raghu Rajan, André Biedenkapp, Noor Awad, Frank Hutter, Vu Nguyen
ICLR 2025 Multi-Objective Differentiable Neural Architecture Search Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Samuel Dooley, Josif Grabocka, Frank Hutter
ICML 2025 Position: The Future of Bayesian Prediction Is Prior-Fitted Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, Frank Hutter
AutoML 2025 Regularized Neural Ensemblers Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka
NeurIPS 2025 TabArena: A Living Benchmark for Machine Learning on Tabular Data Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai, David Salinas, Frank Hutter
ICML 2025 Tuning LLM Judge Design Decisions for 1/1000 of the Cost David Salinas, Omar Swelam, Frank Hutter
ICLR 2025 Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues Riccardo Grazzi, Julien Siems, Arber Zela, Jörg K.H. Franke, Frank Hutter, Massimiliano Pontil
ICLRW 2025 Unreflected Use of Tabular Data Repositories Can Undermine Research Quality Andrej Tschalzev, Lennart Purucker, Stefan Lüdtke, Frank Hutter, Christian Bartelt, Heiner Stuckenschmidt
AutoML 2025 \texttt{confopt}: A Library for Implementation and Evaluation of Gradient-Based One-Shot NAS Methods Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
ICLRW 2025 Α-PFN: In-Context Learning Entropy Search Tom Julian Viering, Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, Carl Hvarfner, Frank Hutter, Eytan Bakshy
ICLR 2024 A General Framework for User-Guided Bayesian Optimization Carl Hvarfner, Frank Hutter, Luigi Nardi
JAIR 2024 Can Fairness Be Automated? Guidelines and Opportunities for Fairness-Aware AutoML Hilde J. P. Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor H. Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl, Frank Hutter
ICMLW 2024 CoordConformer: Heterogenous EEG Datasets Decoding Using Transformers Sharat Patil, Robin Tibor Schirrmeister, Frank Hutter, Tonio Ball
AutoML 2024 Don’t Waste Your Time: Early Stopping Cross-Validation Edward Bergman, Lennart Purucker, Frank Hutter
NeurIPS 2024 Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data Kai Helli, David Schnurr, Noah Hollmann, Samuel Müller, Frank Hutter
NeurIPSW 2024 Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data David Schnurr, Kai Helli, Noah Hollmann, Samuel Müller, Frank Hutter
NeurIPSW 2024 Ensembling Finetuned Language Models for Text Classification Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, Josif Grabocka
ICMLW 2024 FairPFN: Transformers Can Do Counterfactual Fairness Jake Robertson, Noah Hollmann, Noor Awad, Frank Hutter
AutoML 2024 Fast Benchmarking of Asynchronous Multi-Fidelity Optimization on Zero-Cost Benchmarks Shuhei Watanabe, Neeratyoy Mallik, Edward Bergman, Frank Hutter
NeurIPSW 2024 GAMformer: Exploring In-Context Learning for Generalized Additive Models Andreas C Mueller, Julien Siems, Harsha Nori, Rich Caruana, Frank Hutter
NeurIPSW 2024 GAMformer: Exploring In-Context Learning for Generalized Additive Models Andreas C Mueller, Julien Siems, Harsha Nori, David Salinas, Arber Zela, Rich Caruana, Frank Hutter
AutoML 2024 HPO-RL-Bench: A Zero-Cost Benchmark for HPO in Reinforcement Learning Gresa Shala, Sebastian Pineda Arango, André Biedenkapp, Frank Hutter, Josif Grabocka
NeurIPS 2024 HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Aaron Klein, Lennart Purucker, Jörg K. H. Franke, Frank Hutter
NeurIPS 2024 Improving Deep Learning Optimization Through Constrained Parameter Regularization Jörg K.H. Franke, Michael Hefenbrock, Gregor Koehler, Frank Hutter
ICML 2024 In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Eddie Bergman, Frank Hutter
AutoML 2024 Is Mamba Capable of In-Context Learning? Riccardo Grazzi, Julien Niklas Siems, Simon Schrodi, Thomas Brox, Frank Hutter
NeurIPSW 2024 Large Language Model Compression with Neural Architecture Search Rhea Sanjay Sukthanker, Benedikt Staffler, Frank Hutter, Aaron Klein
NeurIPSW 2024 Large Language Models Engineer Too Many Simple Features for Tabular Data Jaris Küken, Lennart Purucker, Frank Hutter
NeurIPSW 2024 Mamba4Cast: Efficient Zero-Shot Time Series Forecasting with State Space Models Sathya Kamesh Bhethanabhotla, Omar Swelam, Julien Siems, David Salinas, Frank Hutter
ICMLW 2024 Multi-Objective Differentiable Neural Architecture Search Rhea Sanjay Sukthanker, Arber Zela, Benedikt Staffler, Samuel Dooley, Josif Grabocka, Frank Hutter
NeurIPSW 2024 One-Shot World Models Using a Transformer Trained on a Synthetic Prior Fabio Ferreira, Moreno Schlageter, Raghu Rajan, André Biedenkapp, Frank Hutter
ICML 2024 Position: A Call to Action for a Human-Centered AutoML Paradigm Marius Lindauer, Florian Karl, Anne Klier, Julia Moosbauer, Alexander Tornede, Andreas C Mueller, Frank Hutter, Matthias Feurer, Bernd Bischl
ICLR 2024 Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, Josif Grabocka
ICLRW 2024 RNA-Protein Interaction Classification via Sequence Embeddings Dominika Matus, Frederic Runge, Jörg K.H. Franke, Lars Gerne, Michael Uhl, Frank Hutter, Rolf Backofen
ICML 2024 Surprisingly Strong Performance Prediction with Neural Graph Features Gabriela Kadlecová, Jovita Lukasik, Martin Pilát, Petra Vidnerová, Mahmoud Safari, Roman Neruda, Frank Hutter
NeurIPSW 2024 The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features Shi Bin Hoo, Samuel Müller, David Salinas, Frank Hutter
NeurIPSW 2024 The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features Shi Bin Hoo, Samuel Müller, David Salinas, Frank Hutter
ICLRW 2024 Towards Generative RNA Design with Tertiary Interactions Sharat Patil, Frederic Runge, Jörg K.H. Franke, Frank Hutter
NeurIPSW 2024 Transfer Learning for Finetuning Large Language Models Tobias Strangmann, Lennart Purucker, Jörg K.H. Franke, Ivo Rapant, Fabio Ferreira, Frank Hutter
NeurIPS 2024 TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah Goldblum, Niv Cohen, Colin White
NeurIPSW 2024 Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues Riccardo Grazzi, Julien Siems, Jörg K.H. Franke, Arber Zela, Frank Hutter, Massimiliano Pontil
NeurIPSW 2024 Warmstarting for Scaling Language Models Neeratyoy Mallik, Maciej Janowski, Johannes Hog, Herilalaina Rakotoarison, Aaron Klein, Josif Grabocka, Frank Hutter
AutoML 2024 Weight-Entanglement Meets Gradient-Based Neural Architecture Search Rhea Sanjay Sukthanker, Arjun Krishnakumar, Mahmoud Safari, Frank Hutter
IJCAI 2023 C-TPE: Tree-Structured Parzen Estimator with Inequality Constraints for Expensive Hyperparameter Optimization Shuhei Watanabe, Frank Hutter
ICMLW 2023 CAAFE: Combining Large Language Models with Tabular Predictors for Semi-Automated Data Science Noah Hollmann, Samuel Müller, Frank Hutter
NeurIPS 2023 Construction of Hierarchical Neural Architecture Search Spaces Based on Context-Free Grammars Simon Schrodi, Danny Stoll, Binxin Ru, Rhea Sukthanker, Thomas Brox, Frank Hutter
TMLR 2023 Contextualize Me – The Case for Context in Reinforcement Learning Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André Biedenkapp, Bodo Rosenhahn, Frank Hutter, Marius Lindauer
NeurIPS 2023 Efficient Bayesian Learning Curve Extrapolation Using Prior-Data Fitted Networks Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, Frank Hutter
ICLR 2023 Gray-Box Gaussian Processes for Automated Reinforcement Learning Gresa Shala, André Biedenkapp, Frank Hutter, Josif Grabocka
NeurIPS 2023 Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering Noah Hollmann, Samuel Müller, Frank Hutter
TMLR 2023 MASIF: Meta-Learned Algorithm Selection Using Implicit Fidelity Information Tim Ruhkopf, Aditya Mohan, Difan Deng, Alexander Tornede, Frank Hutter, Marius Lindauer
JAIR 2023 MDP Playground: An Analysis and Debug Testbed for Reinforcement Learning Raghu Rajan, Jessica Lizeth Borja Diaz, Suresh Guttikonda, Fabio Ferreira, André Biedenkapp, Jan Ole von Hartz, Frank Hutter
NeurIPSW 2023 New Horizons in Parameter Regularization: A Constraint Approach Jörg K.H. Franke, Michael Hefenbrock, Gregor Koehler, Frank Hutter
IJCAI 2023 PED-ANOVA: Efficiently Quantifying Hyperparameter Importance in Arbitrary Subspaces Shuhei Watanabe, Archit Bansal, Frank Hutter
ICML 2023 PFNs4BO: In-Context Learning for Bayesian Optimization Samuel Müller, Matthias Feurer, Noah Hollmann, Frank Hutter
NeurIPS 2023 PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer, Luigi Nardi, Frank Hutter
NeurIPS 2023 Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition Samuel Dooley, Rhea Sukthanker, John Dickerson, Colin White, Frank Hutter, Micah Goldblum
NeurIPS 2023 Self-Correcting Bayesian Optimization Through Bayesian Active Learning Carl Hvarfner, Erik Hellsten, Frank Hutter, Luigi Nardi
IJCAI 2023 Speeding up Multi-Objective Hyperparameter Optimization by Task Similarity-Based Meta-Learning for the Tree-Structured Parzen Estimator Shuhei Watanabe, Noor H. Awad, Masaki Onishi, Frank Hutter
ICLR 2023 TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
ICLR 2023 Transfer NAS with Meta-Learned Bayesian Surrogates Gresa Shala, Thomas Elsken, Frank Hutter, Josif Grabocka
ICLR 2022 $\pi$BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, Luigi Nardi
JMLR 2022 Auto-Sklearn 2.0: Hands-Free AutoML via Meta-Learning Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, Frank Hutter
NeurIPSW 2022 AutoRL-Bench 1.0 Gresa Shala, Sebastian Pineda Arango, André Biedenkapp, Frank Hutter, Josif Grabocka
JAIR 2022 Automated Dynamic Algorithm Configuration Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor H. Awad, Theresa Eimer, Marius Lindauer, Frank Hutter
JAIR 2022 Automated Reinforcement Learning (AutoRL): A Survey and Open Problems Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, Marius Lindauer
NeurIPSW 2022 Bayesian Optimization with a Neural Network Meta-Learned on Synthetic Data Only Samuel Müller, Sebastian Pineda Arango, Matthias Feurer, Josif Grabocka, Frank Hutter
ECML-PKDD 2022 Efficient Automated Deep Learning for Time Series Forecasting Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, Marius Lindauer
NeurIPSW 2022 Efficient Bayesian Learning Curve Extrapolation Using Prior-Data Fitted Networks Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, Frank Hutter
NeurIPSW 2022 GraViT-E: Gradient-Based Vision Transformer Search with Entangled Weights Rhea Sanjay Sukthanker, Arjun Krishnakumar, Sharat Patil, Frank Hutter
NeurIPSW 2022 Gray-Box Gaussian Processes for Automated Reinforcement Learning Gresa Shala, André Biedenkapp, Frank Hutter, Josif Grabocka
NeurIPS 2022 JAHS-Bench-201: A Foundation for Research on Joint Architecture and Hyperparameter Search Archit Bansal, Danny Stoll, Maciej Janowski, Arber Zela, Frank Hutter
NeurIPS 2022 Joint Entropy Search for Maximally-Informed Bayesian Optimization Carl Hvarfner, Frank Hutter, Luigi Nardi
ICLR 2022 Learning Synthetic Environments and Reward Networks for Reinforcement Learning Fabio Ferreira, Thomas Nierhoff, Andreas Sälinger, Frank Hutter
NeurIPSW 2022 Multi-Objective Tree-Structured Parzen Estimator Meets Meta-Learning Shuhei Watanabe, Noor Awad, Masaki Onishi, Frank Hutter
NeurIPS 2022 NAS-Bench-Suite-Zero: Accelerating Research on Zero Cost Proxies Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, Frank Hutter
ICLR 2022 NAS-Bench-Suite: NAS Evaluation Is (Now) Surprisingly Easy Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian, Mahmoud Safari, Kaicheng Yu, Frank Hutter
NeurIPSW 2022 On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, Micah Goldblum
NeurIPSW 2022 On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, Micah Goldblum
ICMLW 2022 On the Importance of Hyperparameters and Data Augmentation for Self-Supervised Learning Diane Wagner, Fabio Ferreira, Danny Stoll, Robin Tibor Schirrmeister, Samuel Müller, Frank Hutter
NeurIPSW 2022 PriorBand: HyperBand + Human Expert Knowledge Neeratyoy Mallik, Carl Hvarfner, Danny Stoll, Maciej Janowski, Eddie Bergman, Marius Lindauer, Luigi Nardi, Frank Hutter
NeurIPS 2022 Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design Jörg Franke, Frederic Runge, Frank Hutter
MLOSS 2022 SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, Frank Hutter
ICLR 2022 Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, Frank Hutter
NeurIPSW 2022 TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second Noah Hollmann, Samuel Müller, Katharina Eggensperger, Frank Hutter
NeurIPSW 2022 Towards Discovering Neural Architectures from Scratch Simon Schrodi, Danny Stoll, Binxin Ru, Rhea Sanjay Sukthanker, Thomas Brox, Frank Hutter
NeurIPSW 2022 Transfer NAS with Meta-Learned Bayesian Surrogates Gresa Shala, Thomas Elsken, Frank Hutter, Josif Grabocka
ICLR 2022 Transformers Can Do Bayesian Inference Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, Frank Hutter
ICML 2022 Zero-Shot AutoML with Pretrained Models Ekrem Öztürk, Fabio Ferreira, Hadi Jomaa, Lars Schmidt-Thieme, Josif Grabocka, Frank Hutter
AISTATS 2021 On the Importance of Hyperparameter Optimization for Model-Based Reinforcement Learning Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra
ICMLW 2021 Bag of Baselines for Multi-Objective Joint Neural Architecture Search and Hyperparameter Optimization Sergio Izquierdo, Julia Guerrero-Viu, Sven Hauns, Guilherme Miotto, Simon Schrodi, André Biedenkapp, Thomas Elsken, Difan Deng, Marius Lindauer, Frank Hutter
ECML-PKDD 2021 Bayesian Optimization with a Prior for the Optimum Artur L. F. Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, Frank Hutter
IJCAI 2021 DACBench: A Benchmark Library for Dynamic Algorithm Configuration Theresa Eimer, André Biedenkapp, Maximilian Reimer, Steven Adriaensen, Frank Hutter, Marius Lindauer
IJCAI 2021 DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization Noor H. Awad, Neeratyoy Mallik, Frank Hutter
NeurIPS 2021 How Powerful Are Performance Predictors in Neural Architecture Search? Colin White, Arber Zela, Robin Ru, Yang Liu, Frank Hutter
NeurIPS 2021 NAS-Bench-X11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter
NeurIPS 2021 Neural Ensemble Search for Uncertainty Estimation and Dataset Shift Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, Yee W. Teh
MLOSS 2021 OpenML-Python: An Extensible Python API for OpenML Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, Frank Hutter
ICLR 2021 Sample-Efficient Automated Deep Reinforcement Learning Jörg K.H. Franke, Gregor Koehler, André Biedenkapp, Frank Hutter
ICML 2021 Self-Paced Context Evaluation for Contextual Reinforcement Learning Theresa Eimer, André Biedenkapp, Frank Hutter, Marius Lindauer
ICML 2021 TempoRL: Learning When to Act André Biedenkapp, Raghu Rajan, Frank Hutter, Marius Lindauer
NeurIPSW 2021 Transformers Can Do Bayesian-Inference by Meta-Learning on Prior-Data Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, Frank Hutter
ICCV 2021 TrivialAugment: Tuning-Free yet State-of-the-Art Data Augmentation Samuel G. Müller, Frank Hutter
NeurIPS 2021 Well-Tuned Simple Nets Excel on Tabular Datasets Arlind Kadra, Marius Lindauer, Frank Hutter, Josif Grabocka
JMLR 2020 Best Practices for Scientific Research on Neural Architecture Search Marius Lindauer, Frank Hutter
ECML-PKDD 2020 Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I Frank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera
ECML-PKDD 2020 Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part II Frank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera
ECML-PKDD 2020 Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part III Frank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera
ICLR 2020 Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel
ICLR 2020 NAS-Bench-1Shot1: Benchmarking and Dissecting One-Shot Neural Architecture Search Arber Zela, Julien Siems, Frank Hutter
ICLR 2020 Transferring Optimality Across Data Distributions via Homotopy Methods Matilde Gargiani, Andrea Zanelli, Quoc Tran Dinh, Moritz Diehl, Frank Hutter
ICLR 2020 Understanding and Robustifying Differentiable Architecture Search Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, Frank Hutter
IJCAI 2019 An Evolution Strategy with Progressive Episode Lengths for Playing Games Lior Fuks, Noor H. Awad, Frank Hutter, Marius Lindauer
ICLR 2019 Decoupled Weight Decay Regularization Ilya Loshchilov, Frank Hutter
ICLR 2019 Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution Thomas Elsken, Jan Hendrik Metzen, Frank Hutter
ICLR 2019 Learning to Design RNA Frederic Runge, Danny Stoll, Stefan Falkner, Frank Hutter
NeurIPS 2019 Meta-Surrogate Benchmarking for Hyperparameter Optimization Aaron Klein, Zhenwen Dai, Frank Hutter, Neil Lawrence, Javier Gonzalez
ICML 2019 NAS-Bench-101: Towards Reproducible Neural Architecture Search Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, Frank Hutter
JMLR 2019 Neural Architecture Search: A Survey Thomas Elsken, Jan Hendrik Metzen, Frank Hutter
ECML-PKDD 2019 Optimizing Neural Networks for Patent Classification Louay Abdelgawad, Peter Kluegl, Erdan Genc, Stefan Falkner, Frank Hutter
JAIR 2019 Pitfalls and Best Practices in Algorithm Configuration Katharina Eggensperger, Marius Lindauer, Frank Hutter
ICML 2018 BOHB: Robust and Efficient Hyperparameter Optimization at Scale Stefan Falkner, Aaron Klein, Frank Hutter
IJCAI 2018 Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari Patryk Chrabaszcz, Ilya Loshchilov, Frank Hutter
MLJ 2018 Efficient Benchmarking of Algorithm Configurators via Model-Based Surrogates Katharina Eggensperger, Marius Lindauer, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown
NeurIPS 2018 Maximizing Acquisition Functions for Bayesian Optimization James Wilson, Frank Hutter, Marc Deisenroth
IJCAI 2018 Neural Networks for Predicting Algorithm Runtime Distributions Katharina Eggensperger, Marius Lindauer, Frank Hutter
ECCV 2018 Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
AAAI 2018 Warmstarting of Model-Based Algorithm Configuration Marius Lindauer, Frank Hutter
MLOSS 2017 Auto-WEKA 2.0: Automatic Model Selection and Hyperparameter Optimization in WEKA Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown
IJCAI 2017 AutoFolio: An Automatically Configured Algorithm Selector (Extended Abstract) Marius Lindauer, Frank Hutter, Holger H. Hoos, Torsten Schaub
AAAI 2017 Efficient Parameter Importance Analysis via Ablation with Surrogates Andre Biedenkapp, Marius Lindauer, Katharina Eggensperger, Frank Hutter, Chris Fawcett, Holger H. Hoos
AISTATS 2017 Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, Frank Hutter
ICLR 2017 Learning Curve Prediction with Bayesian Neural Networks Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, Frank Hutter
ICLR 2017 SGDR: Stochastic Gradient Descent with Warm Restarts Ilya Loshchilov, Frank Hutter
JAIR 2016 Bayesian Optimization in a Billion Dimensions via Random Embeddings Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, Nando de Freitas
NeurIPS 2016 Bayesian Optimization with Robust Bayesian Neural Networks Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, Frank Hutter
AutoML 2016 Towards Automatically-Tuned Neural Networks Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, Frank Hutter
IJCAI 2015 Algorithm Runtime Prediction: Methods and Evaluation (Extended Abstract) Frank Hutter, Lin Xu, Holger H. Hoos, Kevin Leyton-Brown
JAIR 2015 AutoFolio: An Automatically Configured Algorithm Selector Marius Lindauer, Holger H. Hoos, Frank Hutter, Torsten Schaub
AAAI 2015 Automatic Configuration of Sequential Planning Portfolios Jendrik Seipp, Silvan Sievers, Malte Helmert, Frank Hutter
AAAI 2015 Efficient Benchmarking of Hyperparameter Optimizers via Surrogates Katharina Eggensperger, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown
NeurIPS 2015 Efficient and Robust Automated Machine Learning Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, Frank Hutter
AAAI 2015 Initializing Bayesian Hyperparameter Optimization via Meta-Learning Matthias Feurer, Jost Tobias Springenberg, Frank Hutter
IJCAI 2015 On the Effective Configuration of Planning Domain Models Mauro Vallati, Frank Hutter, Lukás Chrpa, Thomas Leo McCluskey
IJCAI 2015 Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves Tobias Domhan, Jost Tobias Springenberg, Frank Hutter
ICML 2014 An Efficient Approach for Assessing Hyperparameter Importance Frank Hutter, Holger Hoos, Kevin Leyton-Brown
IJCAI 2013 Bayesian Optimization in High Dimensions via Random Embeddings Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando de Freitas
JAIR 2009 ParamILS: An Automatic Algorithm Configuration Framework Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Thomas Stützle
JAIR 2008 SATzilla: Portfolio-Based Algorithm Selection for SAT Lin Xu, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown
AAAI 2007 Automatic Algorithm Configuration Based on Local Search Frank Hutter, Holger H. Hoos, Thomas Stützle
IJCAI 2005 Efficient Stochastic Local Search for MPE Solving Frank Hutter, Holger H. Hoos, Thomas Stützle