Iiduka, Hideaki

7 publications

TMLR 2025 A General Framework of Riemannian Adaptive Optimization Methods with a Convergence Analysis Hiroyuki Sakai, Hideaki Iiduka
AAAI 2025 Explicit and Implicit Graduated Optimization in Deep Neural Networks Naoki Sato, Hideaki Iiduka
TMLR 2025 Increasing Both Batch Size and Learning Rate Accelerates Stochastic Gradient Descent Hikaru Umeda, Hideaki Iiduka
TMLR 2025 Relationship Between Batch Size and Number of Steps Needed for Nonconvex Optimization of Stochastic Gradient Descent Using Armijo-Line-Search Learning Rate Yuki Tsukada, Hideaki Iiduka
JMLR 2024 Scaled Conjugate Gradient Method for Nonconvex Optimization in Deep Neural Networks Naoki Sato, Koshiro Izumi, Hideaki Iiduka
AISTATS 2023 Conjugate Gradient Method for Generative Adversarial Networks Hiroki Naganuma, Hideaki Iiduka
ICML 2023 Existence and Estimation of Critical Batch Size for Training Generative Adversarial Networks with Two Time-Scale Update Rule Naoki Sato, Hideaki Iiduka