ML Anthology
Authors
Search
About
Im, Sungjin
12 publications
NeurIPS
2025
A Beyond-Worst-Case Analysis of Greedy K-Means++
Qingyun Chen
,
Sungjin Im
,
Benjamin Moseley
,
Ryan Milstrey
,
Chenyang Xu
,
Ruilong Zhang
NeurIPS
2024
Binary Search with Distributional Predictions
Michael Dinitz
,
Sungjin Im
,
Thomas Lavastida
,
Benjamin Moseley
,
Aidin Niaparast
,
Sergei Vassilvitskii
AAAI
2024
Sampling for Beyond-Worst-Case Online Ranking
Qingyun Chen
,
Sungjin Im
,
Benjamin Moseley
,
Chenyang Xu
,
Ruilong Zhang
AAAI
2023
Min-Max Submodular Ranking for Multiple Agents
Qingyun Chen
,
Sungjin Im
,
Benjamin Moseley
,
Chenyang Xu
,
Ruilong Zhang
ECML-PKDD
2023
Online State Exploration: Competitive Worst Case and Learning-Augmented Algorithms
Sungjin Im
,
Benjamin Moseley
,
Chenyang Xu
,
Ruilong Zhang
NeurIPS
2022
Algorithms with Prediction Portfolios
Michael Dinitz
,
Sungjin Im
,
Thomas Lavastida
,
Benjamin Moseley
,
Sergei Vassilvitskii
ICML
2022
Parsimonious Learning-Augmented Caching
Sungjin Im
,
Ravi Kumar
,
Aditya Petety
,
Manish Purohit
NeurIPS
2021
Faster Matchings via Learned Duals
Michael Dinitz
,
Sungjin Im
,
Thomas Lavastida
,
Benjamin Moseley
,
Sergei Vassilvitskii
NeurIPS
2021
Online Knapsack with Frequency Predictions
Sungjin Im
,
Ravi Kumar
,
Mahshid Montazer Qaem
,
Manish Purohit
AISTATS
2020
Fast Noise Removal for K-Means Clustering
Sungjin Im
,
Mahshid Montazer Qaem
,
Benjamin Moseley
,
Xiaorui Sun
,
Rudy Zhou
AISTATS
2020
Unconditional Coresets for Regularized Loss Minimization
Alireza Samadian
,
Kirk Pruhs
,
Benjamin Moseley
,
Sungjin Im
,
Ryan Curtin
ECML-PKDD
2019
Fast and Parallelizable Ranking with Outliers from Pairwise Comparisons
Sungjin Im
,
Mahshid Montazer Qaem