ML Anthology
Authors
Search
About
Ivanova, Desi R.
11 publications
AISTATS
2025
Is Merging Worth It? Securely Evaluating the Information Gain for Causal Dataset Acquisition
Jake Fawkes
,
Lucile Ter-Minassian
,
Desi R. Ivanova
,
Uri Shalit
,
Christopher C. Holmes
ICML
2025
Position: Don’t Use the CLT in LLM Evals with Fewer than a Few Hundred Datapoints
Sam Bowyer
,
Laurence Aitchison
,
Desi R. Ivanova
ICLRW
2025
Semantic-Level Confidence Calibration of Language Models via Temperature Scaling
Tom A. Lamb
,
Desi R. Ivanova
,
Philip Torr
,
Tim G. J. Rudner
ICML
2025
Step-DAD: Semi-Amortized Policy-Based Bayesian Experimental Design
Marcel Hedman
,
Desi R. Ivanova
,
Cong Guan
,
Tom Rainforth
NeurIPSW
2024
Data-Efficient Variational Mutual Information Estimation via Bayesian Self-Consistency
Desi R. Ivanova
,
Marvin Schmitt
,
Stefan T. Radev
ICML
2024
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
,
Desi R. Ivanova
,
Daniel Habermann
,
Ullrich Koethe
,
Paul-Christian Bürkner
,
Stefan T. Radev
ICML
2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
,
Joel Jennings
,
Tom Rainforth
,
Cheng Zhang
,
Adam Foster
ICML
2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Panagiotis Tigas
,
Yashas Annadani
,
Desi R. Ivanova
,
Andrew Jesson
,
Yarin Gal
,
Adam Foster
,
Stefan Bauer
ICLRW
2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Panagiotis Tigas
,
Yashas Annadani
,
Desi R. Ivanova
,
Andrew Jesson
,
Yarin Gal
,
Adam Foster
,
Stefan Bauer
ICML
2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
,
Desi R Ivanova
,
Ilyas Malik
,
Tom Rainforth
NeurIPS
2021
Implicit Deep Adaptive Design: Policy-Based Experimental Design Without Likelihoods
Desi R Ivanova
,
Adam Foster
,
Steven Kleinegesse
,
Michael U. Gutmann
,
Thomas Rainforth