ML Anthology
Authors
Search
About
Iyengar, Garud
17 publications
AISTATS
2025
$β$-Th Order Acyclicity Derivatives for DAG Learning
Madhumitha Shridharan
,
Garud Iyengar
AISTATS
2025
Learning the Pareto Front Using Bootstrapped Observation Samples
Wonyoung Kim
,
Garud Iyengar
,
Assaf Zeevi
ICML
2025
Linear Bandits with Partially Observable Features
Wonyoung Kim
,
Sungwoo Park
,
Garud Iyengar
,
Assaf Zeevi
,
Min-Hwan Oh
AISTATS
2024
A Doubly Robust Approach to Sparse Reinforcement Learning
Wonyoung Kim
,
Garud Iyengar
,
Assaf Zeevi
NeurIPS
2024
Is Cross-Validation the Gold Standard to Estimate Out-of-Sample Model Performance?
Garud Iyengar
,
Henry Lam
,
Tianyu Wang
IJCAI
2024
Layered Graph Security Games
Jakub Cerný
,
Chun Kai Ling
,
Christian Kroer
,
Garud Iyengar
ICML
2023
Causal Bounds in Quasi-Markovian Graphs
Madhumitha Shridharan
,
Garud Iyengar
AISTATS
2023
Hedging Against Complexity: Distributionally Robust Optimization with Parametric Approximation
Garud Iyengar
,
Henry Lam
,
Tianyu Wang
ICML
2023
Improved Algorithms for Multi-Period Multi-Class Packing Problems with Bandit Feedback
Wonyoung Kim
,
Garud Iyengar
,
Assaf Zeevi
JMLR
2023
Scalable Computation of Causal Bounds
Madhumitha Shridharan
,
Garud Iyengar
ICML
2022
Scalable Computation of Causal Bounds
Madhumitha Shridharan
,
Garud Iyengar
AAAI
2021
Multinomial Logit Contextual Bandits: Provable Optimality and Practicality
Min-hwan Oh
,
Garud Iyengar
ICML
2021
Sparsity-Agnostic Lasso Bandit
Min-Hwan Oh
,
Garud Iyengar
,
Assaf Zeevi
ICMLW
2019
Multinomial Logit Contextual Bandits
Min-hwan Oh
,
Garud Iyengar
NeurIPS
2019
Thompson Sampling for Multinomial Logit Contextual Bandits
Min-hwan Oh
,
Garud Iyengar
AISTATS
2017
Linear Convergence of Stochastic Frank Wolfe Variants
Donald Goldfarb
,
Garud Iyengar
,
Chaoxu Zhou
ICML
2015
An Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization
Necdet Aybat
,
Zi Wang
,
Garud Iyengar