ML Anthology
Authors
Search
About
Jacobsen, Joern-Henrik
17 publications
ICML
2025
Addressing Misspecification in Simulation-Based Inference Through Data-Driven Calibration
Antoine Wehenkel
,
Juan L. Gamella
,
Ozan Sener
,
Jens Behrmann
,
Guillermo Sapiro
,
Joern-Henrik Jacobsen
,
Marco Cuturi
ICLRW
2023
Considerations for Distribution Shift Robustness in Health
Arno Blaas
,
Andrew Miller
,
Luca Zappella
,
Joern-Henrik Jacobsen
,
Christina Heinze-Deml
NeurIPSW
2023
Inferring Cardiovascular Biomarkers with Hybrid Model Learning
Ortal Senouf
,
Jens Behrmann
,
Joern-Henrik Jacobsen
,
Pascal Frossard
,
Emmanuel Abbe
,
Antoine Wehenkel
TMLR
2023
Robust Hybrid Learning with Expert Augmentation
Antoine Wehenkel
,
Jens Behrmann
,
Hsiang Hsu
,
Guillermo Sapiro
,
Gilles Louppe
,
Joern-Henrik Jacobsen
CLeaR
2022
Learning Invariant Representations with Missing Data
Mark Goldstein
,
Joern-Henrik Jacobsen
,
Olina Chau
,
Adriel Saporta
,
Aahlad Manas Puli
,
Rajesh Ranganath
,
Andrew Miller
AISTATS
2021
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
,
Paul Vicol
,
Kuan-Chieh Wang
,
Roger Grosse
,
Joern-Henrik Jacobsen
ICML
2021
Environment Inference for Invariant Learning
Elliot Creager
,
Joern-Henrik Jacobsen
,
Richard Zemel
NeurIPSW
2021
Learning Invariant Representations with Missing Data
Mark Goldstein
,
Joern-Henrik Jacobsen
,
Olina Chau
,
Adriel Saporta
,
Aahlad Manas Puli
,
Rajesh Ranganath
,
Andrew Miller
ICML
2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David Krueger
,
Ethan Caballero
,
Joern-Henrik Jacobsen
,
Amy Zhang
,
Jonathan Binas
,
Dinghuai Zhang
,
Remi Le Priol
,
Aaron Courville
ICML
2020
Fundamental Tradeoffs Between Invariance and Sensitivity to Adversarial Perturbations
Florian Tramer
,
Jens Behrmann
,
Nicholas Carlini
,
Nicolas Papernot
,
Joern-Henrik Jacobsen
ICML
2020
How to Train Your Neural ODE: The World of Jacobian and Kinetic Regularization
Chris Finlay
,
Joern-Henrik Jacobsen
,
Levon Nurbekyan
,
Adam Oberman
ICML
2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models Without Sampling
Will Grathwohl
,
Kuan-Chieh Wang
,
Joern-Henrik Jacobsen
,
David Duvenaud
,
Richard Zemel
ICLR
2019
Excessive Invariance Causes Adversarial Vulnerability
Joern-Henrik Jacobsen
,
Jens Behrmann
,
Richard Zemel
,
Matthias Bethge
ICML
2019
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
,
David Madras
,
Joern-Henrik Jacobsen
,
Marissa Weis
,
Kevin Swersky
,
Toniann Pitassi
,
Richard Zemel
ICML
2019
Invertible Residual Networks
Jens Behrmann
,
Will Grathwohl
,
Ricky T. Q. Chen
,
David Duvenaud
,
Joern-Henrik Jacobsen
NeurIPS
2019
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Qiyang Li
,
Saminul Haque
,
Cem Anil
,
James Lucas
,
Roger B Grosse
,
Joern-Henrik Jacobsen
NeurIPS
2019
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
,
Jens Behrmann
,
David K. Duvenaud
,
Joern-Henrik Jacobsen