Jaeger, Manfred

26 publications

TMLR 2025 A Self-Explainable Heterogeneous GNN for Relational Deep Learning Francesco Ferrini, Antonio Longa, Andrea Passerini, Manfred Jaeger
NeurIPS 2025 Bridging Theory and Practice in Link Representation with Graph Neural Networks Veronica Lachi, Francesco Ferrini, Antonio Longa, Bruno Lepri, Andrea Passerini, Manfred Jaeger
ECML-PKDD 2025 Primula-3for Probabilistic Modeling and Reasoning on Graph Data Raffaele Pojer, Manfred Jaeger
LoG 2023 A Simple Latent Variable Model for Graph Learning and Inference Manfred Jaeger, Antonio Longa, Steve Azzolin, Oliver Schulte, Andrea Passerini
LoG 2023 Generalized Reasoning with Graph Neural Networks by Relational Bayesian Network Encodings Raffaele Pojer, Andrea Passerini, Manfred Jaeger
LoG 2023 Meta-Path Learning for Multi-Relational Graph Neural Networks Francesco Ferrini, Antonio Longa, Andrea Passerini, Manfred Jaeger
JMLR 2022 The AIM and EM Algorithms for Learning from Coarse Data Manfred Jaeger
IJCAI 2021 Learning Aggregation Functions Giovanni Pellegrini, Alessandro Tibo, Paolo Frasconi, Andrea Passerini, Manfred Jaeger
IJCAI 2020 A Complete Characterization of Projectivity for Statistical Relational Models Manfred Jaeger, Oliver Schulte
JMLR 2020 Learning and Interpreting Multi-Multi-Instance Learning Networks Alessandro Tibo, Manfred Jaeger, Paolo Frasconi
PGM 2020 Preface Thomas D. Nielsen, Manfred Jaeger
ECML-PKDD 2017 A Network Architecture for Multi-Multi-Instance Learning Alessandro Tibo, Paolo Frasconi, Manfred Jaeger
MLJ 2016 Learning Deterministic Probabilistic Automata from a Model Checking Perspective Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, Kim G. Larsen, Brian Nielsen
ECML-PKDD 2013 Identifiability of Model Properties in Over-Parameterized Model Classes Manfred Jaeger
ACML 2012 Learning and Model-Checking Networks of I/O Automata Hua Mao, Manfred Jaeger
MLJ 2011 Relational Information Gain Marco Lippi, Manfred Jaeger, Paolo Frasconi, Andrea Passerini
ICML 2007 Parameter Learning for Relational Bayesian Networks Manfred Jaeger
ECML-PKDD 2006 On Testing the Missing at Random Assumption Manfred Jaeger
UAI 2006 The AI&M Procedure for Learning from Incomplete Data Manfred Jaeger
JAIR 2005 Ignorability in Statistical and Probabilistic Inference Manfred Jaeger
ICML 2003 Probabilistic Classifiers and the Concepts They Recognize Manfred Jaeger
IJCAI 2001 Constraints as Data: A New Perspective on Inferring Probabilities Manfred Jaeger
UAI 1998 Measure Selection: Notions of Rationality and Representation Independence Manfred Jaeger
UAI 1997 Relational Bayesian Networks Manfred Jaeger
IJCAI 1995 Minimum Cross-Entropy Reasoning: A Statistical Justification Manfred Jaeger
UAI 1994 A Logic for Default Reasoning About Probabilities Manfred Jaeger