Jain, Moksh
29 publications
ICLR
2025
Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning
Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain ICLRW
2025
Solving Bayesian Inverse Problems with Diffusion Priors and Off-Policy RL
Luca Scimeca, Siddarth Venkatraman, Moksh Jain, Minsu Kim, Marcin Sendera, Mohsin Hasan, Alexandre Adam, Yashar Hezaveh, Laurence Perreault-Levasseur, Yoshua Bengio, Glen Berseth, Nikolay Malkin NeurIPS
2025
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training
Brian R. Bartoldson, Siddarth Venkatraman, James Diffenderfer, Moksh Jain, Tal Ben-Nun, Seanie Lee, Minsu Kim, Johan Obando-Ceron, Yoshua Bengio, Bhavya Kailkhura NeurIPS
2024
Amortizing Intractable Inference in Diffusion Models for Vision, Language, and Control
Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin NeurIPSW
2024
Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning
Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain ICML
2023
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio ICML
2022
Biological Sequence Design with GFlowNets
Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, Yoshua Bengio