Jaiswal, Ajay Kumar

18 publications

ICML 2025 From Low Rank Gradient Subspace Stabilization to Low-Rank Weights: Observations, Theories, and Applications Ajay Kumar Jaiswal, Yifan Wang, Lu Yin, Shiwei Liu, Runjin Chen, Jiawei Zhao, Ananth Grama, Yuandong Tian, Zhangyang Wang
NeurIPS 2025 GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling Tianhao Chen, Xin Xu, Zijing Liu, Pengxiang Li, Xinyuan Song, Ajay Kumar Jaiswal, Fan Zhang, Jishan Hu, Yang Wang, Hao Chen, Shizhe Diao, Shiwei Liu, Yu Li, Lu Yin, Can Yang
CPAL 2025 Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients Zhenyu Zhang, Ajay Kumar Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, Zhangyang Wang
ICLR 2025 SEBRA : Debiasing Through Self-Guided Bias Ranking Adarsh Kappiyath, Abhra Chaudhuri, Ajay Kumar Jaiswal, Ziquan Liu, Yunpeng Li, Xiatian Zhu, Lu Yin
ICLR 2024 Compressing LLMs: The Truth Is Rarely Pure and Never Simple Ajay Kumar Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, Yinfei Yang
ICML 2024 Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James Diffenderfer, Brian R. Bartoldson, Ajay Kumar Jaiswal, Kaidi Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song, Zhangyang Wang, Bo Li
ICLRW 2024 Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James Diffenderfer, Brian R. Bartoldson, Ajay Kumar Jaiswal, Kaidi Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song, Zhangyang Wang, Bo Li
ICML 2024 Junk DNA Hypothesis: Pruning Small Pre-Trained Weights $\textit{Irreversibly}$ and $\textit{Monotonically}$ Impairs “Difficult" Downstream Tasks in LLMs Lu Yin, Ajay Kumar Jaiswal, Shiwei Liu, Souvik Kundu, Zhangyang Wang
ICML 2024 LLaGA: Large Language and Graph Assistant Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, Zhangyang Wang
ICML 2024 Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu
ICLRW 2024 Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, Shiwei Liu
ICML 2024 Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All at Once Zhangheng Li, Shiwei Liu, Tianlong Chen, Ajay Kumar Jaiswal, Zhenyu Zhang, Dilin Wang, Raghuraman Krishnamoorthi, Shiyu Chang, Zhangyang Wang
ICML 2023 Graph Ladling: Shockingly Simple Parallel GNN Training Without Intermediate Communication Ajay Kumar Jaiswal, Shiwei Liu, Tianlong Chen, Ying Ding, Zhangyang Wang
ICML 2023 Instant Soup: Cheap Pruning Ensembles in a Single Pass Can Draw Lottery Tickets from Large Models Ajay Kumar Jaiswal, Shiwei Liu, Tianlong Chen, Ying Ding, Zhangyang Wang
ICML 2023 Outline, Then Details: Syntactically Guided Coarse-to-Fine Code Generation Wenqing Zheng, S P Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, Zhangyang Wang
ICLR 2023 Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers Tianlong Chen, Zhenyu Zhang, Ajay Kumar Jaiswal, Shiwei Liu, Zhangyang Wang
ICLR 2023 Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together! Shiwei Liu, Tianlong Chen, Zhenyu Zhang, Xuxi Chen, Tianjin Huang, Ajay Kumar Jaiswal, Zhangyang Wang
ICML 2022 Training Your Sparse Neural Network Better with Any Mask Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, Zhangyang Wang