ML Anthology
Authors
Search
About
Janz, David
10 publications
NeurIPS
2025
Eluder Dimension: Localise It!
Alireza Bakhtiari
,
Alex Ayoub
,
Samuel McLaughlin Robertson
,
David Janz
,
Csaba Szepesvari
ALT
2025
When and Why Randomised Exploration Works (in Linear Bandits)
Marc Abeille
,
David Janz
,
Ciara Pike-Burke
NeurIPS
2024
Ensemble Sampling for Linear Bandits: Small Ensembles Suffice
David Janz
,
Alexander E. Litvak
,
Csaba Szepesvári
AISTATS
2024
Exploration via Linearly Perturbed Loss Minimisation
David Janz
,
Shuai Liu
,
Alex Ayoub
,
Csaba Szepesvári
ICLR
2024
Stochastic Gradient Descent for Gaussian Processes Done Right
Jihao Andreas Lin
,
Shreyas Padhy
,
Javier Antoran
,
Austin Tripp
,
Alexander Terenin
,
Csaba Szepesvari
,
José Miguel Hernández-Lobato
,
David Janz
NeurIPS
2023
Sampling from Gaussian Process Posteriors Using Stochastic Gradient Descent
Jihao Andreas Lin
,
Javier Antorán
,
Shreyas Padhy
,
David Janz
,
José Miguel Hernández-Lobato
,
Alexander Terenin
ICLR
2023
Sampling-Based Inference for Large Linear Models, with Application to Linearised Laplace
Javier Antoran
,
Shreyas Padhy
,
Riccardo Barbano
,
Eric Nalisnick
,
David Janz
,
José Miguel Hernández-Lobato
ICML
2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antoran
,
David Janz
,
James U Allingham
,
Erik Daxberger
,
Riccardo Rb Barbano
,
Eric Nalisnick
,
Jose Miguel Hernandez-Lobato
AISTATS
2020
Bandit Optimisation of Functions in the Matérn Kernel RKHS
David Janz
,
David Burt
,
Javier Gonzalez
NeurIPS
2019
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
,
Jiri Hron
,
Przemysław Mazur
,
Katja Hofmann
,
José Miguel Hernández-Lobato
,
Sebastian Tschiatschek