Japkowicz, Nathalie

32 publications

ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part I Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part II Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part III Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IV Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part V Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VI Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VII Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
ECML-PKDD 2025 Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Rita P. Ribeiro, Inês Dutra, Mykola Pechenizkiy, Paulo Cortez, Sepideh Pashami, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
MLJ 2024 Correction to: Exploiting Sparsity and Statistical Dependence in Multivariate Data Fusion: An Application to Misinformation Detection for High-Impact Events Lucas P. Damasceno, Egzona Rexhepi, Allison Shafer, Ian Whitehouse, Nathalie Japkowicz, Charles C. Cavalcante, Roberto Corizzo, Zois Boukouvalas
MLJ 2024 Exploiting Sparsity and Statistical Dependence in Multivariate Data Fusion: An Application to Misinformation Detection for High-Impact Events Lucas P. Damasceno, Egzona Rexhepi, Allison Shafer, Ian Whitehouse, Nathalie Japkowicz, Charles C. Cavalcante, Roberto Corizzo, Zois Boukouvalas
MLJ 2024 From MNIST to ImageNet and Back: Benchmarking Continual Curriculum Learning Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo
MLJ 2024 The Class Imbalance Problem in Deep Learning Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Paula Branco, Bartosz Krawczyk, Nathalie Japkowicz
CoLLAs 2022 Model-Free Generative Replay for Lifelong Reinforcement Learning: Application to Starcraft-2 Zachary Alan Daniels, Aswin Raghavan, Jesse Hostetler, Abrar Rahman, Indranil Sur, Michael Piacentino, Ajay Divakaran, Roberto Corizzo, Kamil Faber, Nathalie Japkowicz, Michael Baron, James Smith, Sahana Pramod Joshi, Zsolt Kira, Cameron Ethan Taylor, Mustafa Burak Gurbuz, Constantine Dovrolis, Tyler L. Hayes, Christopher Kanan, Jhair Gallardo
ECML-PKDD 2018 Clustering in the Presence of Concept Drift Richard Hugh Moulton, Herna L. Viktor, Nathalie Japkowicz, João Gama
MLJ 2018 Manifold-Based Synthetic Oversampling with Manifold Conformance Estimation Colin Bellinger, Christopher Drummond, Nathalie Japkowicz
ICCVW 2017 Homography Estimation from Image Pairs with Hierarchical Convolutional Networks Nathalie Japkowicz, Farzan Erlik Nowruzi, Robert Laganière
MLJ 2017 Special Issue on Discovery Science Nathalie Japkowicz, Stan Matwin
ECML-PKDD 2016 Beyond the Boundaries of SMOTE - A Framework for Manifold-Based Synthetically Oversampling Colin Bellinger, Christopher Drummond, Nathalie Japkowicz
ECML-PKDD 2013 Inner Ensembles: Using Ensemble Methods Inside the Learning Algorithm Houman Abbasian, Chris Drummond, Nathalie Japkowicz, Stan Matwin
ECML-PKDD 2011 Smooth Receiver Operating Characteristics (smROC) Curves William Klement, Peter A. Flach, Nathalie Japkowicz, Stan Matwin
ICML 2009 Workshop Summary: The Fourth Workshop on Evaluation Methods for Machine Learning Chris Drummond, Nathalie Japkowicz, William Klement, Sofus A. Macskassy
ECML-PKDD 2008 A Projection-Based Framework for Classifier Performance Evaluation Nathalie Japkowicz, Pritika Sanghi, Peter E. Tischer
ECML-PKDD 2008 A Visualization-Based Exploratory Technique for Classifier Comparison with Respect to Multiple Metrics and Multiple Domains Rocío Alaíz-Rodríguez, Nathalie Japkowicz, Peter E. Tischer
AAAI 2007 A Meta-Learning Approach for Selecting Between Response Automation Strategies in a Help-Desk Domain Yuval Marom, Ingrid Zukerman, Nathalie Japkowicz
ECML-PKDD 2006 Evaluating Misclassifications in Imbalanced Data William Elazmeh, Nathalie Japkowicz, Stan Matwin
ECML-PKDD 2004 Applying Support Vector Machines to Imbalanced Datasets Rehan Akbani, Stephen Kwek, Nathalie Japkowicz
NeurIPS 2002 The Decision List Machine Marina Sokolova, Mario Marchand, Nathalie Japkowicz, John S. Shawe-taylor
MLJ 2001 Supervised Versus Unsupervised Binary-Learning by Feedforward Neural Networks Nathalie Japkowicz
AISTATS 2001 Using Unsupervised Learning to Guide Resampling in Imbalanced Data Sets Adam Nickerson, Nathalie Japkowicz, Evangelos E. Milios
NeCo 2000 Nonlinear Autoassociation Is Not Equivalent to PCA Nathalie Japkowicz, Stephen Jose Hanson, Mark A. Gluck
IJCAI 1995 A Novelty Detection Approach to Classification Nathalie Japkowicz, Catherine Myers, Mark A. Gluck
AAAI 1994 Bootstrapping Training-Data Representations for Inductive Learning: A Case Study in Molecular Biology Haym Hirsh, Nathalie Japkowicz