Jayaraman, Dinesh

65 publications

ICLR 2025 Articulate-Anything: Automatic Modeling of Articulated Objects via a Vision-Language Foundation Model Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder, Arjun Krishna, Dinesh Jayaraman, Eric Eaton
TMLR 2025 Illustrated Landmark Graphs for Long-Horizon Policy Learning Christopher Watson, Arjun Krishna, Rajeev Alur, Dinesh Jayaraman
ICLR 2025 REGENT: A Retrieval-Augmented Generalist Agent That Can Act In-Context in New Environments Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, Insup Lee
CoRL 2025 RICL: Adding In-Context Adaptability to Pre-Trained Vision-Language-Action Models Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, Insup Lee
NeurIPS 2025 Real-World Reinforcement Learning of Active Perception Behaviors Edward S. Hu, Jie Wang, Xingfang Yuan, Fiona Luo, Muyao Li, Gaspard Lambrechts, Oleh Rybkin, Dinesh Jayaraman
CoRL 2025 RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies Pranav Atreya, Karl Pertsch, Tony Lee, Moo Jin Kim, Arhan Jain, Artur Kuramshin, Cyrus Neary, Edward S. Hu, Kanav Arora, Kirsty Ellis, Luca Macesanu, Matthew Leonard, Meedeum Cho, Ozgur Aslan, Shivin Dass, Tony Wang, Xingfang Yuan, Abhishek Gupta, Dinesh Jayaraman, Glen Berseth, Kostas Daniilidis, Roberto Martín-Martín, Youngwoon Lee, Percy Liang, Chelsea Finn, Sergey Levine
ICLR 2025 The Belief State Transformer Edward S. Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh Jayaraman, Alex Lamb, John Langford
ICLR 2025 The Value of Sensory Information to a Robot Arjun Krishna, Edward S. Hu, Dinesh Jayaraman
ICLR 2025 Vision Language Models Are In-Context Value Learners Yecheng Jason Ma, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani, Peng Xu, Danny Driess, Ted Xiao, Osbert Bastani, Dinesh Jayaraman, Wenhao Yu, Tingnan Zhang, Dorsa Sadigh, Fei Xia
ICLR 2024 Can Transformers Capture Spatial Relations Between Objects? Chuan Wen, Dinesh Jayaraman, Yang Gao
CoRL 2024 Environment Curriculum Generation via Large Language Models William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, Yecheng Jason Ma
ICLR 2024 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
NeurIPSW 2024 Leveraging Symmetry to Accelerate Learning of Trajectory Tracking Controllers for Free-Flying Robotic Systems Jake Welde, Nishanth Rao, Pratik Kunapuli, Dinesh Jayaraman, Vijay Kumar
ICLR 2024 Memory-Consistent Neural Networks for Imitation Learning Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, James Weimer, Insup Lee
ICLR 2024 Privileged Sensing Scaffolds Reinforcement Learning Edward S. Hu, James Springer, Oleh Rybkin, Dinesh Jayaraman
NeurIPSW 2024 REGENT: A Retrieval-Augmented Generalist Agent That Can Act In-Context in New Environments Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, Insup Lee
NeurIPSW 2024 REGENT: A Retrieval-Augmented Generalist Agent That Can Act In-Context in New Environments Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, Insup Lee
ECCV 2024 TLControl: Trajectory and Language Control for Human Motion Synthesis Weilin Wan, Zhiyang Dou, Taku Komura, Wenping Wang, Dinesh Jayaraman, Lingjie Liu
CoRL 2024 Task-Oriented Hierarchical Object Decomposition for Visuomotor Control Jianing Qian, Yunshuang Li, Bernadette Bucher, Dinesh Jayaraman
ICLR 2024 ZeroFlow: Scalable Scene Flow via Distillation Kyle Vedder, Neehar Peri, Nathaniel Eliot Chodosh, Ishan Khatri, Eric Eaton, Dinesh Jayaraman, Yang Liu, Deva Ramanan, James Hays
NeurIPSW 2023 Contrastive Power-Efficient Physical Learning in Resistor Networks Menachem Stern, Sam Dillavou, Dinesh Jayaraman, Douglas Durian, Andrea Liu
NeurIPSW 2023 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
NeurIPSW 2023 Eureka: Human-Level Reward Design via Coding Large Language Models Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, Anima Anandkumar
CoRL 2023 Im2Contact: Vision-Based Contact Localization Without Touch or Force Sensing Leon Kim, Yunshuang Li, Michael Posa, Dinesh Jayaraman
ICML 2023 LIV: Language-Image Representations and Rewards for Robotic Control Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, Dinesh Jayaraman
ICLRW 2023 LIV: Language-Image Representations and Rewards for Robotic Control Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, Dinesh Jayaraman
L4DC 2023 Learning Policy-Aware Models for Model-Based Reinforcement Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Jason Yan, Osbert Bastani, Dinesh Jayaraman
ICLR 2023 Planning Goals for Exploration Edward S. Hu, Richard Chang, Oleh Rybkin, Dinesh Jayaraman
CoLLAs 2023 Prospective Learning: Principled Extrapolation to the Future Ashwin De Silva, Rahul Ramesh, Lyle Ungar, Marshall Hussain Shuler, Noah J. Cowan, Michael Platt, Chen Li, Leyla Isik, Seung-Eon Roh, Adam Charles, Archana Venkataraman, Brian Caffo, Javier J. How, Justus M Kebschull, John W. Krakauer, Maxim Bichuch, Kaleab Alemayehu Kinfu, Eva Yezerets, Dinesh Jayaraman, Jong M. Shin, Soledad Villar, Ian Phillips, Carey E. Priebe, Thomas Hartung, Michael I. Miller, Jayanta Dey, Ningyuan Huang, Eric Eaton, Ralph Etienne-Cummings, Elizabeth L. Ogburn, Randal Burns, Onyema Osuagwu, Brett Mensh, Alysson R. Muotri, Julia Brown, Chris White, Weiwei Yang, Andrei A. Rusu Timothy Verstynen, Konrad P. Kording, Pratik Chaudhari, Joshua T. Vogelstein
NeurIPSW 2023 Universal Visual Decomposer: Long-Horizon Manipulation Made Easy Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma, Luca Weihs
NeurIPSW 2023 Universal Visual Decomposer: Long-Horizon Manipulation Made Easy Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Jayaraman, Yecheng Jason Ma, Luca Weihs
ICLR 2023 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
AAAI 2022 Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning Yecheng Jason Ma, Andrew Shen, Osbert Bastani, Dinesh Jayaraman
ECCV 2022 Discovering Deformable Keypoint Pyramids Jianing Qian, Anastasios Panagopoulos, Dinesh Jayaraman
ICML 2022 Fighting Fire with Fire: Avoiding DNN Shortcuts Through Priming Chuan Wen, Jianing Qian, Jierui Lin, Jiaye Teng, Dinesh Jayaraman, Yang Gao
ICLR 2022 Know Thyself: Transferable Visual Control Policies Through Robot-Awareness Edward S. Hu, Kun Huang, Oleh Rybkin, Dinesh Jayaraman
ICLRW 2022 Know Thyself: Transferable Visual Control Policies Through Robot-Awareness Edward S. Hu, Kun Huang, Oleh Rybkin, Dinesh Jayaraman
NeurIPS 2022 Offline Goal-Conditioned Reinforcement Learning via $f$-Advantage Regression Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, Osbert Bastani
NeurIPSW 2022 Policy Aware Model Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Osbert Bastani, Dinesh Jayaraman
NeurIPSW 2022 Policy Aware Model Learning via Transition Occupancy Matching Yecheng Jason Ma, Kausik Sivakumar, Osbert Bastani, Dinesh Jayaraman
NeurIPSW 2022 Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
CoRL 2022 Training Robots to Evaluate Robots: Example-Based Interactive Reward Functions for Policy Learning Kun Huang, Edward S. Hu, Dinesh Jayaraman
NeurIPSW 2022 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
NeurIPSW 2022 VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, Amy Zhang
ICLRW 2022 Versatile Offline Imitation Learning via State-Occupancy Matching Yecheng Jason Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani
ICML 2022 Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching Yecheng Ma, Andrew Shen, Dinesh Jayaraman, Osbert Bastani
NeurIPS 2021 Conservative Offline Distributional Reinforcement Learning Yecheng Ma, Dinesh Jayaraman, Osbert Bastani
NeurIPSW 2021 Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning Yecheng Jason Ma, Andrew Shen, Osbert Bastani, Dinesh Jayaraman
L4DC 2021 How Are Learned Perception-Based Controllers Impacted by the Limits of Robust Control? Jingxi Xu, Bruce Lee, Nikolai Matni, Dinesh Jayaraman
ICML 2021 Keyframe-Focused Visual Imitation Learning Chuan Wen, Jierui Lin, Jianing Qian, Yang Gao, Dinesh Jayaraman
ICCV 2021 Likelihood-Based Diverse Sampling for Trajectory Forecasting Yecheng Jason Ma, Jeevana Priya Inala, Dinesh Jayaraman, Osbert Bastani
ICCV 2021 Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman, Kostas Daniilidis
ICLR 2021 SMiRL: Surprise Minimizing Reinforcement Learning in Unstable Environments Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Jayaraman, Sergey Levine
ICML 2020 Cautious Adaptation for Reinforcement Learning in Safety-Critical Settings Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, Dinesh Jayaraman
NeurIPS 2020 Fighting Copycat Agents in Behavioral Cloning from Observation Histories Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman, Yang Gao
NeurIPS 2020 Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, Sergey Levine
CoRL 2020 Model-Based Inverse Reinforcement Learning from Visual Demonstrations Neha Das, Sarah Bechtle, Todor Davchev, Dinesh Jayaraman, Akshara Rai, Franziska Meier
NeurIPS 2019 Causal Confusion in Imitation Learning Pim de Haan, Dinesh Jayaraman, Sergey Levine
ICLR 2019 Time-Agnostic Prediction: Predicting Predictable Video Frames Dinesh Jayaraman, Frederik Ebert, Alexei Efros, Sergey Levine
ECCV 2018 ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids Dinesh Jayaraman, Ruohan Gao, Kristen Grauman
ECCV 2016 Look-Ahead Before You Leap: End-to-End Active Recognition by Forecasting the Effect of Motion Dinesh Jayaraman, Kristen Grauman
CVPR 2016 Slow and Steady Feature Analysis: Higher Order Temporal Coherence in Video Dinesh Jayaraman, Kristen Grauman
ICCV 2015 Learning Image Representations Tied to Ego-Motion Dinesh Jayaraman, Kristen Grauman
CVPR 2014 Decorrelating Semantic Visual Attributes by Resisting the Urge to Share Dinesh Jayaraman, Fei Sha, Kristen Grauman
NeurIPS 2014 Zero-Shot Recognition with Unreliable Attributes Dinesh Jayaraman, Kristen Grauman