Jerfel, Ghassen

10 publications

JMLR 2023 A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zachary Nado, Jasper Snoek, Dustin Tran, Balaji Lakshminarayanan
TMLR 2022 Sparse MoEs Meet Efficient Ensembles James Urquhart Allingham, Florian Wenzel, Zelda E Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe Jenatton
JMLR 2022 Underspecification Presents Challenges for Credibility in Modern Machine Learning Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley
NeurIPSW 2021 Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W Dusenberry, Ghassen Jerfel, Dustin Tran, Yarin Gal
ICLR 2021 Combining Ensembles and Data Augmentation Can Harm Your Calibration Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran
UAI 2021 Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence Ghassen Jerfel, Serena Wang, Clara Wong-Fannjiang, Katherine A. Heller, Yian Ma, Michael I. Jordan
ICML 2020 Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran
CVPRW 2019 Measuring Calibration in Deep Learning Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, Dustin Tran
NeurIPS 2019 Reconciling Meta-Learning and Continual Learning with Online Mixtures of Tasks Ghassen Jerfel, Erin Grant, Tom Griffiths, Katherine A. Heller
AISTATS 2017 Dynamic Collaborative Filtering with Compound Poisson Factorization Ghassen Jerfel, Mehmet Emin Basbug, Barbara E. Engelhardt