ML Anthology
Authors
Search
About
Jiang, Heinrich
29 publications
NeurIPS
2024
SLED: Self Logits Evolution Decoding for Improving Factuality in Large Language Models
Jianyi Zhang
,
Da-Cheng Juan
,
Cyrus Rashtchian
,
Chun-Sung Ferng
,
Heinrich Jiang
,
Yiran Chen
ICLR
2022
Churn Reduction via Distillation
Heinrich Jiang
,
Harikrishna Narasimhan
,
Dara Bahri
,
Andrew Cotter
,
Afshin Rostamizadeh
ICLR
2022
Scarf: Self-Supervised Contrastive Learning Using Random Feature Corruption
Dara Bahri
,
Heinrich Jiang
,
Yi Tay
,
Donald Metzler
AISTATS
2021
Learning the Truth from Only One Side of the Story
Heinrich Jiang
,
Qijia Jiang
,
Aldo Pacchiano
AISTATS
2021
Stochastic Bandits with Linear Constraints
Aldo Pacchiano
,
Mohammad Ghavamzadeh
,
Peter Bartlett
,
Heinrich Jiang
ICML
2021
Active Covering
Heinrich Jiang
,
Afshin Rostamizadeh
NeurIPSW
2021
An Empirical Study of Pre-Trained Vision Models on Out-of-Distribution Generalization
Yaodong Yu
,
Heinrich Jiang
,
Dara Bahri
,
Hossein Mobahi
,
Seungyeon Kim
,
Ankit Singh Rawat
,
Andreas Veit
,
Yi Ma
ICML
2021
Locally Adaptive Label Smoothing Improves Predictive Churn
Dara Bahri
,
Heinrich Jiang
CVPR
2021
MeanShift++: Extremely Fast Mode-Seeking with Applications to Segmentation and Object Tracking
Jennifer Jang
,
Heinrich Jiang
AAAI
2021
Robustness Guarantees for Mode Estimation with an Application to Bandits
Aldo Pacchiano
,
Heinrich Jiang
,
Michael I. Jordan
AAAI
2020
A General Approach to Fairness with Optimal Transport
Silvia Chiappa
,
Ray Jiang
,
Tom Stepleton
,
Aldo Pacchiano
,
Heinrich Jiang
,
John Aslanides
ICML
2020
Deep k-NN for Noisy Labels
Dara Bahri
,
Heinrich Jiang
,
Maya Gupta
NeurIPS
2020
Faster DBSCAN via Subsampled Similarity Queries
Heinrich Jiang
,
Jennifer Jang
,
Jakub Lacki
AISTATS
2020
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
,
Ofir Nachum
ICML
2019
DBSCAN++: Towards Fast and Scalable Density Clustering
Jennifer Jang
,
Heinrich Jiang
AAAI
2019
Non-Asymptotic Uniform Rates of Consistency for k-NN Regression
Heinrich Jiang
JMLR
2019
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
,
Heinrich Jiang
,
Maya Gupta
,
Serena Wang
,
Taman Narayan
,
Seungil You
,
Karthik Sridharan
AISTATS
2019
Robustness Guarantees for Density Clustering
Heinrich Jiang
,
Jennifer Jang
,
Ofir Nachum
ICML
2019
Shape Constraints for Set Functions
Andrew Cotter
,
Maya Gupta
,
Heinrich Jiang
,
Erez Louidor
,
James Muller
,
Tamann Narayan
,
Serena Wang
,
Tao Zhu
ICML
2019
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Andrew Cotter
,
Maya Gupta
,
Heinrich Jiang
,
Nathan Srebro
,
Karthik Sridharan
,
Serena Wang
,
Blake Woodworth
,
Seungil You
ALT
2019
Two-Player Games for Efficient Non-Convex Constrained Optimization
Andrew Cotter
,
Heinrich Jiang
,
Karthik Sridharan
UAI
2019
Wasserstein Fair Classification
Ray Jiang
,
Aldo Pacchiano
,
Tom Stepleton
,
Heinrich Jiang
,
Silvia Chiappa
AAAI
2018
Nonparametric Stochastic Contextual Bandits
Melody Y. Guan
,
Heinrich Jiang
ICML
2018
Quickshift++: Provably Good Initializations for Sample-Based Mean Shift
Heinrich Jiang
,
Jennifer Jang
,
Samory Kpotufe
NeurIPS
2018
To Trust or Not to Trust a Classifier
Heinrich Jiang
,
Been Kim
,
Melody Guan
,
Maya Gupta
ICML
2017
Density Level Set Estimation on Manifolds with DBSCAN
Heinrich Jiang
AISTATS
2017
Modal-Set Estimation with an Application to Clustering
Heinrich Jiang
,
Samory Kpotufe
NeurIPS
2017
On the Consistency of Quick Shift
Heinrich Jiang
ICML
2017
Uniform Convergence Rates for Kernel Density Estimation
Heinrich Jiang