ML Anthology
Authors
Search
About
Jiang, Yiding
22 publications
ICLR
2025
Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws
Yiding Jiang
,
Allan Zhou
,
Zhili Feng
,
Sadhika Malladi
,
J Zico Kolter
TMLR
2025
Automated Black-Box Prompt Engineering for Personalized Text-to-Image Generation
Yutong He
,
Alexander Robey
,
Naoki Murata
,
Yiding Jiang
,
Joshua Nathaniel Williams
,
George J. Pappas
,
Hamed Hassani
,
Yuki Mitsufuji
,
Ruslan Salakhutdinov
,
J Zico Kolter
NeurIPS
2025
Learning Parameterized Skills from Demonstrations
Vedant Gupta
,
Haotian Fu
,
Calvin Luo
,
Yiding Jiang
,
George Konidaris
NeurIPS
2025
Safety Pretraining: Toward the Next Generation of Safe AI
Pratyush Maini
,
Sachin Goyal
,
Dylan Sam
,
Alexander Robey
,
Yash Savani
,
Yiding Jiang
,
Andy Zou
,
Matt Fredrikson
,
Zachary Chase Lipton
,
J Zico Kolter
ICML
2025
Training a Generally Curious Agent
Fahim Tajwar
,
Yiding Jiang
,
Abitha Thankaraj
,
Sumaita Sadia Rahman
,
J Zico Kolter
,
Jeff Schneider
,
Russ Salakhutdinov
ICLRW
2025
Training a Generally Curious Agent
Fahim Tajwar
,
Yiding Jiang
,
Abitha Thankaraj
,
Sumaita Sadia Rahman
,
J Zico Kolter
,
Jeff Schneider
,
Ruslan Salakhutdinov
ICLR
2024
On the Joint Interaction of Models, Data, and Features
Yiding Jiang
,
Christina Baek
,
J Zico Kolter
ICLR
2024
Understanding Prompt Engineering May Not Require Rethinking Generalization
Victor Akinwande
,
Yiding Jiang
,
Dylan Sam
,
J Zico Kolter
NeurIPS
2023
Language Models Are Weak Learners
Hariharan Manikandan
,
Yiding Jiang
,
J. Zico Kolter
ICMLW
2023
Language Models Are Weak Learners
Hariharan Manikandan
,
Yiding Jiang
,
J Zico Kolter
NeurIPS
2023
Neural Functional Transformers
Allan Zhou
,
Kaien Yang
,
Yiding Jiang
,
Kaylee Burns
,
Winnie Xu
,
Samuel Sokota
,
J. Zico Kolter
,
Chelsea Finn
NeurIPS
2023
On the Importance of Exploration for Generalization in Reinforcement Learning
Yiding Jiang
,
J. Zico Kolter
,
Roberta Raileanu
NeurIPS
2023
Permutation Equivariant Neural Functionals
Allan Zhou
,
Kaien Yang
,
Kaylee Burns
,
Adriano Cardace
,
Yiding Jiang
,
Samuel Sokota
,
J. Zico Kolter
,
Chelsea Finn
ICMLW
2023
Understanding Prompt Engineering Does Not Require Rethinking Generalization
Victor Akinwande
,
Yiding Jiang
,
Dylan Sam
,
J Zico Kolter
NeurIPS
2022
Agreement-on-the-Line: Predicting the Performance of Neural Networks Under Distribution Shift
Christina Baek
,
Yiding Jiang
,
Aditi Raghunathan
,
J. Zico Kolter
ICLR
2022
Assessing Generalization of SGD via Disagreement
Yiding Jiang
,
Vaishnavh Nagarajan
,
Christina Baek
,
J Zico Kolter
NeurIPS
2022
Learning Options via Compression
Yiding Jiang
,
Evan Liu
,
Benjamin Eysenbach
,
J. Zico Kolter
,
Chelsea Finn
NeurIPSW
2022
Uncertainty-Driven Exploration for Generalization in Reinforcement Learning
Yiding Jiang
,
J Zico Kolter
,
Roberta Raileanu
ICLR
2020
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
,
Behnam Neyshabur
,
Hossein Mobahi
,
Dilip Krishnan
,
Samy Bengio
ICLR
2020
Observational Overfitting in Reinforcement Learning
Xingyou Song
,
Yiding Jiang
,
Stephen Tu
,
Yilun Du
,
Behnam Neyshabur
NeurIPS
2019
Language as an Abstraction for Hierarchical Deep Reinforcement Learning
YiDing Jiang
,
Shixiang Gu
,
Kevin P. Murphy
,
Chelsea Finn
ICLR
2019
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
,
Dilip Krishnan
,
Hossein Mobahi
,
Samy Bengio