Johnson, Matthew J.

13 publications

ICML 2022 Unified Scaling Laws for Routed Language Models Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, George Bm Van Den Driessche, Eliza Rutherford, Tom Hennigan, Matthew J Johnson, Albin Cassirer, Chris Jones, Elena Buchatskaya, David Budden, Laurent Sifre, Simon Osindero, Oriol Vinyals, Marc’Aurelio Ranzato, Jack Rae, Erich Elsen, Koray Kavukcuoglu, Karen Simonyan
NeurIPS 2020 Learning Differential Equations That Are Easy to Solve Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, David K. Duvenaud
NeurIPSW 2019 Dex: Array Programming with Typed Indices Dougal Maclaurin, Alexey Radul, Matthew J. Johnson, and Dimitrios Vytiniotis
NeurIPSW 2019 Taylor-Mode Automatic Differentiation for Higher-Order Derivatives in JAX Jesse Bettencourt, Matthew J. Johnson, David Duvenaud
AISTATS 2019 The LORACs Prior for VAEs: Letting the Trees Speak for the Data Sharad Vikram, Matthew D. Hoffman, Matthew J. Johnson
NeurIPS 2018 Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language Matthew D. Hoffman, Matthew J Johnson, Dustin Tran
AISTATS 2018 Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models Ardavan Saeedi, Matthew D. Hoffman, Stephen J. DiVerdi, Asma Ghandeharioun, Matthew J. Johnson, Ryan P. Adams
AISTATS 2017 Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Scott W. Linderman, Matthew J. Johnson, Andrew C. Miller, Ryan P. Adams, David M. Blei, Liam Paninski
NeurIPS 2016 Composing Graphical Models with Neural Networks for Structured Representations and Fast Inference Matthew J Johnson, David K. Duvenaud, Alex Wiltschko, Ryan P. Adams, Sandeep R Datta
NeurIPS 2015 Dependent Multinomial Models Made Easy: Stick-Breaking with the Polya-Gamma Augmentation Scott Linderman, Matthew J Johnson, Ryan P. Adams
NeurIPS 2013 Analyzing Hogwild Parallel Gaussian Gibbs Sampling Matthew J Johnson, James Saunderson, Alan Willsky
JMLR 2013 Bayesian Nonparametric Hidden Semi-Markov Models Matthew J. Johnson, Alan S. Willsky
UAI 2010 The Hierarchical Dirichlet Process Hidden Semi-Markov Model Matthew J. Johnson, Alan S. Willsky