Joshi, Chaitanya K.

15 publications

ICML 2025 All-Atom Diffusion Transformers: Unified Generative Modelling of Molecules and Materials Chaitanya K. Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop Sriram, Zachary Ward Ulissi
ICLRW 2025 All-Atom Diffusion Transformers: Unified Generative Modelling of Molecules and Materials Chaitanya K. Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop Sriram, Zachary Ward Ulissi
FnTML 2025 Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Alex Strasser, Haiyang Yu, Yuqing Xie, Xiang Fu, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik J. Bekkers, Michael M. Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi S. Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess E. Smidt, Shuiwang Ji
TMLR 2025 RNA-FrameFlow: Flow Matching for De Novo 3D RNA Backbone Design Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian Rokkum Jamasb, Charles Harris, Simon V Mathis, Kieran Didi, Rex Ying, Bryan Hooi, Pietro Lio
ICLRW 2025 Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs Batu El, Deepro Choudhury, Pietro Lio, Chaitanya K. Joshi
ICLR 2025 gRNAde: Geometric Deep Learning for 3D RNA Inverse Design Chaitanya K. Joshi, Arian Rokkum Jamasb, Ramon Viñas Torné, Charles Harris, Simon V Mathis, Alex Morehead, Rishabh Anand, Pietro Lio
ICLR 2024 Evaluating Representation Learning on the Protein Structure Universe Arian Rokkum Jamasb, Alex Morehead, Chaitanya K. Joshi, Zuobai Zhang, Kieran Didi, Simon V Mathis, Charles Harris, Jian Tang, Jianlin Cheng, Pietro Lio, Tom Leon Blundell
ICMLW 2024 RNA-FrameFlow for De Novo 3D RNA Backbone Design Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian Rokkum Jamasb, Charles Harris, Simon V Mathis, Kieran Didi, Bryan Hooi, Pietro Lio
ICMLW 2024 RNA-FrameFlow for De Novo 3D RNA Backbone Design Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian Rokkum Jamasb, Charles Harris, Simon V Mathis, Kieran Didi, Bryan Hooi, Pietro Lio
JMLR 2023 Benchmarking Graph Neural Networks Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson
ICMLW 2023 Group Invariant Global Pooling Kamil Bujel, Yonatan Gideoni, Chaitanya K. Joshi, Pietro Lio
ICML 2023 On the Expressive Power of Geometric Graph Neural Networks Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, Pietro Lio
LoG 2023 The Second Learning on Graphs Conference: Preface Soledad Villar, Benjamin Chamberlain, Yuanqi Du, Hannes St"ark, Chaitanya K. Joshi, Andreea Deac, Iulia Duta, Joshua Robinson, Yanqiao Zhu, Kexin Huang, Michelle Li, Sofia Bourhim, Ilia Igashov, Alexandre Duval, Mathieu Alain, Dominique Beaini, Xinyu Yuan
NeurIPSW 2022 On the Expressive Power of Geometric Graph Neural Networks Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, Pietro Liò
LoG 2022 The First Learning on Graphs Conference: Preface Bastian Rieck, Razvan Pascanu, Yuanqi Du, Hannes Stärk, Derek Lim, Chaitanya K. Joshi, Andreea Deac, Iulia Duta, Joshua Robinson, Gabriele Corso, Leonardo Cotta, Yanqiao Zhu, Kexin Huang, Michelle Li, Sofia Bourhim, Ilia Igashov