Kaelbling, Leslie Pack

101 publications

ICML 2025 Flow-Based Domain Randomization for Learning and Sequencing Robotic Skills Aidan Curtis, Eric Li, Michael Noseworthy, Nishad Gothoskar, Sachin Chitta, Hui Li, Leslie Pack Kaelbling, Nicole E Carey
CoRL 2025 LLM-Guided Probabilistic Program Induction for POMDP Model Estimation Aidan Curtis, Hao Tang, Thiago Veloso, Kevin Ellis, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling
CoRL 2025 Streaming Flow Policy: Simplifying Diffusion/flow-Matching Policies by Treating Action Trajectories as Flow Trajectories Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomás Lozano-Pérez, Leslie Pack Kaelbling, Siddharth Ancha
AAAI 2024 Generalized Planning in PDDL Domains with Pretrained Large Language Models Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Michael Katz
ICLR 2024 Learning Interactive Real-World Simulators Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kaelbling, Dale Schuurmans, Pieter Abbeel
CoRL 2024 Learning Long-Horizon Action Dependencies in Sampling-Based Bilevel Planning Bartłomiej Cieślar, Leslie Pack Kaelbling, Tomás Lozano-Pérez, Jorge Mendez-Mendez
NeurIPSW 2024 Learning to Bridge the Gap: Efficient Novelty Recovery with Planning and Reinforcement Learning Alicia Li, Nishanth Kumar, Tomás Lozano-Pérez, Leslie Pack Kaelbling
ICML 2024 Position: Compositional Generative Modeling: A Single Model Is Not All You Need Yilun Du, Leslie Pack Kaelbling
ICML 2024 Scaling Exponents Across Parameterizations and Optimizers Katie E Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, Jeffrey Pennington
CoRL 2024 Trust the PRoC3S: Solving Long-Horizon Robotics Problems with LLMs and Constraint Satisfaction Aidan Curtis, Nishanth Kumar, Jing Cao, Tomás Lozano-Pérez, Leslie Pack Kaelbling
ICLR 2024 Video Language Planning Yilun Du, Sherry Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet, Tianhe Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Andy Zeng, Jonathan Tompson
CoRL 2023 Compositional Diffusion-Based Continuous Constraint Solvers Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling
CoRL 2023 Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, Phillip Isola
CoRL 2023 Embodied Lifelong Learning for Task and Motion Planning Jorge Mendez-Mendez, Leslie Pack Kaelbling, Tomás Lozano-Pérez
CoRL 2023 Learning Efficient Abstract Planning Models That Choose What to Predict Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom Silver, Tomás Lozano-Pérez, Leslie Pack Kaelbling
AAAI 2023 Learning Rational Subgoals from Demonstrations and Instructions Zhezheng Luo, Jiayuan Mao, Jiajun Wu, Tomás Lozano-Pérez, Joshua B. Tenenbaum, Leslie Pack Kaelbling
CoRL 2023 Learning Reusable Manipulation Strategies Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, Leslie Pack Kaelbling
AAAI 2023 Predicate Invention for Bilevel Planning Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, Joshua B. Tenenbaum
AAAI 2022 Discovering State and Action Abstractions for Generalized Task and Motion Planning Aidan Curtis, Tom Silver, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling
CoRL 2022 Learning Neuro-Symbolic Skills for Bilevel Planning Tom Silver, Ashay Athalye, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling
NeurIPSW 2022 PDDL Planning with Pretrained Large Language Models Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, Leslie Pack Kaelbling
IJCAI 2022 PG3: Policy-Guided Planning for Generalized Policy Generation Ryan Yang, Tom Silver, Aidan Curtis, Tomás Lozano-Pérez, Leslie Pack Kaelbling
CoRL 2022 SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields Anthony Simeonov, Yilun Du, Yen-Chen Lin, Alberto Rodriguez Garcia, Leslie Pack Kaelbling, Tomás Lozano-Pérez, Pulkit Agrawal
LoG 2022 Sparse and Local Networks for Hypergraph Reasoning Guangxuan Xiao, Leslie Pack Kaelbling, Jiajun Wu, Jiayuan Mao
JAIR 2021 A Sufficient Statistic for Influence in Structured Multiagent Environments Frans A. Oliehoek, Stefan J. Witwicki, Leslie Pack Kaelbling
AAAI 2021 GLIB: Efficient Exploration for Relational Model-Based Reinforcement Learning via Goal-Literal Babbling Rohan Chitnis, Tom Silver, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Tomás Lozano-Pérez
AAAI 2021 Planning with Learned Object Importance in Large Problem Instances Using Graph Neural Networks Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling
IJCAI 2021 Temporal and Object Quantification Networks Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, Tomer D. Ullman
AAAI 2020 Few-Shot Bayesian Imitation Learning with Logical Program Policies Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, Josh Tenenbaum
NeurIPSW 2020 Measuring Few-Shot Extrapolation with Program Induction Ferran Alet, Javier Lopez-Contreras, Joshua B. Tenenbaum, Tomas Perez, Leslie Pack Kaelbling
ICLR 2020 Meta-Learning Curiosity Algorithms Ferran Alet, Martin F. Schneider, Tomas Lozano-Perez, Leslie Pack Kaelbling
AAAI 2020 Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, Tomás Lozano-Pérez
AAAI 2019 Adversarial Actor-Critic Method for Task and Motion Planning Problems Using Planning Experience Beomjoon Kim, Leslie Pack Kaelbling, Tomás Lozano-Pérez
ICLR 2019 Learning Sparse Relational Transition Models Victoria Xia, Zi Wang, Kelsey Allen, Tom Silver, Leslie Pack Kaelbling
JAIR 2019 Modeling and Planning with Macro-Actions in Decentralized POMDPs Christopher Amato, George Dimitri Konidaris, Leslie Pack Kaelbling, Jonathan P. How
NeurIPS 2019 Neural Relational Inference with Fast Modular Meta-Learning Ferran Alet, Erica Weng, Tomás Lozano-Pérez, Leslie Pack Kaelbling
CoRL 2018 Adaptable Replanning with Compressed Linear Action Models for Learning from Demonstrations Clement Gehring, Leslie Pack Kaelbling, Tomás Lozano-Pérez
IJCAI 2018 Finding Frequent Entities in Continuous Data Ferran Alet, Rohan Chitnis, Leslie Pack Kaelbling, Tomás Lozano-Pérez
JAIR 2018 From Skills to Symbols: Learning Symbolic Representations for Abstract High-Level Planning George Dimitri Konidaris, Leslie Pack Kaelbling, Tomás Lozano-Pérez
AAAI 2018 Guiding Search in Continuous State-Action Spaces by Learning an Action Sampler from Off-Target Search Experience Beomjoon Kim, Leslie Pack Kaelbling, Tomás Lozano-Pérez
CoRL 2018 Learning What Information to Give in Partially Observed Domains Rohan Chitnis, Leslie Pack Kaelbling, Tomás Lozano-Pérez
CoRL 2018 Modular Meta-Learning Ferran Alet, Tomás Lozano-Pérez, Leslie Pack Kaelbling
NeurIPS 2018 Regret Bounds for Meta Bayesian Optimization with an Unknown Gaussian Process Prior Zi Wang, Beomjoon Kim, Leslie Pack Kaelbling
UAI 2017 Intelligent Robots in an Uncertain World Leslie Pack Kaelbling
UAI 2017 Learning to Acquire Information Yewen Pu, Leslie Pack Kaelbling, Armando Solar-Lezama
IJCAI 2016 Learning to Rank for Synthesizing Planning Heuristics Caelan Reed Garrett, Leslie Pack Kaelbling, Tomás Lozano-Pérez
IJCAI 2016 Object-Based World Modeling in Semi-Static Environments with Dependent Dirichlet Process Mixtures Lawson L. S. Wong, Thanard Kurutach, Tomás Lozano-Pérez, Leslie Pack Kaelbling
NeurIPS 2015 Bayesian Optimization with Exponential Convergence Kenji Kawaguchi, Leslie Pack Kaelbling, Tomás Lozano-Pérez
IJCAI 2015 Symbol Acquisition for Probabilistic High-Level Planning George Dimitri Konidaris, Leslie Pack Kaelbling, Tomás Lozano-Pérez
AAAI 2014 Constructing Symbolic Representations for High-Level Planning George Dimitri Konidaris, Leslie Pack Kaelbling, Tomás Lozano-Pérez
AAAI 2014 Optimizing a Start-Stop Controller Using Policy Search Noel Hollingsworth, Jason Meyer, Ryan McGee, Jeffrey Doering, George Dimitri Konidaris, Leslie Pack Kaelbling
AAAI 2012 Influence-Based Abstraction for Multiagent Systems Frans Adriaan Oliehoek, Stefan J. Witwicki, Leslie Pack Kaelbling
IJCAI 2011 Bayesian Policy Search with Policy Priors David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie Pack Kaelbling, Joshua B. Tenenbaum
IJCAI 2011 DetH*: Approximate Hierarchical Solution of Large Markov Decision Processes Jennifer L. Barry, Leslie Pack Kaelbling, Tomás Lozano-Pérez
ECML-PKDD 2010 Intelligent Interaction with the Real World Leslie Pack Kaelbling
AAAI 2008 Lifted Probabilistic Inference with Counting Formulas Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, Leslie Pack Kaelbling
AAAI 2007 Action-Space Partitioning for Planning Natalia Hernandez-Gardiol, Leslie Pack Kaelbling
IJCAI 2007 Efficient Bayesian Task-Level Transfer Learning Daniel M. Roy, Leslie Pack Kaelbling
UAI 2007 Learning Probabilistic Relational Dynamics for Multiple Tasks Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, Leslie Pack Kaelbling
JAIR 2007 Learning Symbolic Models of Stochastic Domains Hanna M. Pasula, Luke S. Zettlemoyer, Leslie Pack Kaelbling
CVPR 2007 Virtual Training for Multi-View Object Class Recognition Han-Pang Chiu, Leslie Pack Kaelbling, Tomás Lozano-Pérez
ICML 2005 Hedged Learning: Regret-Minimization with Learning Experts Yu-Han Chang, Leslie Pack Kaelbling
IJCAI 2005 IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005 Leslie Pack Kaelbling, Alessandro Saffiotti
AAAI 2005 Learning Planning Rules in Noisy Stochastic Worlds Luke S. Zettlemoyer, Hanna Pasula, Leslie Pack Kaelbling
AAAI 2005 Learning Static Object Segmentation from Motion Segmentation Michael G. Ross, Leslie Pack Kaelbling
JAIR 2002 Learning Geometrically-Constrained Hidden Markov Models for Robot Navigation: Bridging the Topological-Geometrical Gap Hagit Shatkay, Leslie Pack Kaelbling
AAAI 2002 Nearly Deterministic Abstractions of Markov Decision Processes Terran Lane, Leslie Pack Kaelbling
UAI 2002 The Thing That We Tried Didn't Work Very Well: Deictic Representation in Reinforcement Learning Sarah Finney, Natalia Gardiol, Leslie Pack Kaelbling, Tim Oates
NeurIPS 2001 Playing Is Believing: The Role of Beliefs in Multi-Agent Learning Yu-Han Chang, Leslie Pack Kaelbling
UAI 2000 Adaptive Importance Sampling for Estimation in Structured Domains Luis E. Ortiz, Leslie Pack Kaelbling
UAI 2000 Learning to Cooperate via Policy Search Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, Leslie Pack Kaelbling
ICML 2000 Practical Reinforcement Learning in Continuous Spaces William D. Smart, Leslie Pack Kaelbling
AAAI 2000 Sampling Methods for Action Selection in Influence Diagrams Luis E. Ortiz, Leslie Pack Kaelbling
ICML 2000 State-Based Classification of Finger Gestures from Electromyographic Signals Peter Ju, Leslie Pack Kaelbling, Yoram Singer
UAI 1999 Accelerating EM: An Empirical Study Luis E. Ortiz, Leslie Pack Kaelbling
UAI 1999 Learning Finite-State Controllers for Partially Observable Environments Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, Leslie Pack Kaelbling
ICML 1999 Learning Policies with External Memory Leonid Peshkin, Nicolas Meuleau, Leslie Pack Kaelbling
IJCAI 1999 Multi-Value-Functions: Efficient Automatic Action Hierarchies for Multiple Goal MDPs Andrew W. Moore, Leemon C. Baird Iii, Leslie Pack Kaelbling
UAI 1999 Solving POMDPs by Searching the Space of Finite Policies Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, Anthony R. Cassandra
AAAI 1998 A Framework for Reinforcement Learning on Real Robots William D. Smart, Leslie Pack Kaelbling
ICML 1998 Heading in the Right Direction Hagit Shatkay, Leslie Pack Kaelbling
UAI 1998 Hierarchical Solution of Markov Decision Processes Using Macro-Actions Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, Craig Boutilier
AAAI 1998 Solving Very Large Weakly Coupled Markov Decision Processes Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kaelbling, Thomas L. Dean, Craig Boutilier
IJCAI 1997 Learning Topological Maps with Weak Local Odometric Information Hagit Shatkay, Leslie Pack Kaelbling
MLJ 1996 Introduction Leslie Pack Kaelbling
JAIR 1996 Reinforcement Learning: A Survey Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore
MLJ 1995 Inferring Finite Automata with Stochastic Output Functions and an Application to mAP Learning Thomas L. Dean, Dana Angluin, Kenneth Basye, Sean P. Engelson, Leslie Pack Kaelbling, Evangelos Kokkevis, Oded Maron
ICML 1995 Learning Policies for Partially Observable Environments: Scaling up Michael L. Littman, Anthony R. Cassandra, Leslie Pack Kaelbling
UAI 1995 On the Complexity of Solving Markov Decision Problems Michael L. Littman, Thomas L. Dean, Leslie Pack Kaelbling
AAAI 1994 Acting Optimally in Partially Observable Stochastic Domains Anthony R. Cassandra, Leslie Pack Kaelbling, Michael L. Littman
MLJ 1994 Associative Reinforcement Learning: A Generate and Test Algorithm Leslie Pack Kaelbling
MLJ 1994 Associative Reinforcement Learning: Functions in K-DNF Leslie Pack Kaelbling
UAI 1993 Deliberation Scheduling for Time-Critical Sequential Decision Making Thomas L. Dean, Leslie Pack Kaelbling, Jak Kirman, Ann E. Nicholson
ICML 1993 Hierarchical Learning in Stochastic Domains: Preliminary Results Leslie Pack Kaelbling
IJCAI 1993 Learning to Achieve Goals Leslie Pack Kaelbling
AAAI 1993 Planning with Deadlines in Stochastic Domains Thomas L. Dean, Leslie Pack Kaelbling, Jak Kirman, Ann E. Nicholson
AAAI 1992 Inferring Finite Automata with Stochastic Output Functions and an Application to mAP Learning Thomas L. Dean, Dana Angluin, Kenneth Basye, Sean P. Engelson, Leslie Pack Kaelbling, Evangelos Kokkevis, Oded Maron
IJCAI 1991 Input Generalization in Delayed Reinforcement Learning: An Algorithm and Performance Comparisons David Chapman, Leslie Pack Kaelbling
ICML 1990 Learning Functions in K-DNF from Reinforcement Leslie Pack Kaelbling
ICML 1989 A Formal Framework for Learning in Embedded Systems Leslie Pack Kaelbling
AAAI 1988 Goals as Parallel Program Specifications Leslie Pack Kaelbling