ML Anthology
Authors
Search
About
Kamath, Pritish
31 publications
AISTATS
2025
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
,
Badih Ghazi
,
Charlie Harrison
,
Pritish Kamath
,
Ravi Kumar
,
Ethan Jacob Leeman
,
Pasin Manurangsi
,
Amer Sinha
,
Chiyuan Zhang
ICML
2025
Empirical Privacy Variance
Yuzheng Hu
,
Fan Wu
,
Ruicheng Xian
,
Yuhang Liu
,
Lydia Zakynthinou
,
Pritish Kamath
,
Chiyuan Zhang
,
David Forsyth
COLT
2025
PREM: Privately Answering Statistical Queries with Relative Error
Badih Ghazi
,
Cristóbal Guzmán
,
Pritish Kamath
,
Alexander Knop
,
Ravi Kumar
,
Pasin Manurangsi
,
Sushant Sachdeva
NeurIPS
2025
Private Hyperparameter Tuning with Ex-Post Guarantee
Badih Ghazi
,
Pritish Kamath
,
Alexander Knop
,
Ravi Kumar
,
Pasin Manurangsi
,
Chiyuan Zhang
NeurIPS
2025
Scaling Embedding Layers in Language Models
Da Yu
,
Edith Cohen
,
Badih Ghazi
,
Yangsibo Huang
,
Pritish Kamath
,
Ravi Kumar
,
Daogao Liu
,
Chiyuan Zhang
ICLR
2025
Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy
Yangsibo Huang
,
Daogao Liu
,
Lynn Chua
,
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Milad Nasr
,
Amer Sinha
,
Chiyuan Zhang
NeurIPSW
2024
Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models
Lynn Chua
,
Badih Ghazi
,
Yangsibo Huang
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Amer Sinha
,
Chulin Xie
,
Chiyuan Zhang
NeurIPS
2024
Differentially Private Optimization with Sparse Gradients
Badih Ghazi
,
Cristóbal Guzmán
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
ICML
2024
How Private Are DP-SGD Implementations?
Lynn Chua
,
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Amer Sinha
,
Chiyuan Zhang
ICML
2024
Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Adam Sealfon
ICLR
2024
LabelDP-Pro: Learning with Label Differential Privacy via Projections
Badih Ghazi
,
Yangsibo Huang
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Chiyuan Zhang
COLT
2024
Learning Neural Networks with Sparse Activations
Pranjal Awasthi
,
Nishanth Dikkala
,
Pritish Kamath
,
Raghu Meka
COLT
2024
On Convex Optimization with Semi-Sensitive Features
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Raghu Meka
,
Chiyuan Zhang
NeurIPS
2024
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
Lynn Chua
,
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Amer Sinha
,
Chiyuan Zhang
NeurIPS
2023
On Computing Pairwise Statistics with Local Differential Privacy
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Adam Sealfon
ICML
2023
On User-Level Private Convex Optimization
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Raghu Meka
,
Chiyuan Zhang
NeurIPS
2023
Optimal Unbiased Randomizers for Regression with Label Differential Privacy
Ashwinkumar Badanidiyuru Varadaraja
,
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Ethan Leeman
,
Pasin Manurangsi
,
Avinash V Varadarajan
,
Chiyuan Zhang
ICLR
2023
Regression with Label Differential Privacy
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Ethan Leeman
,
Pasin Manurangsi
,
Avinash Varadarajan
,
Chiyuan Zhang
NeurIPS
2023
Sparsity-Preserving Differentially Private Training of Large Embedding Models
Badih Ghazi
,
Yangsibo Huang
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Amer Sinha
,
Chiyuan Zhang
COLT
2023
Ticketed Learning–Unlearning Schemes
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Ayush Sekhari
,
Chiyuan Zhang
NeurIPS
2023
User-Level Differential Privacy with Few Examples per User
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Raghu Meka
,
Chiyuan Zhang
NeurIPS
2022
Anonymized Histograms in Intermediate Privacy Models
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
ICML
2022
Do More Negative Samples Necessarily Hurt in Contrastive Learning?
Pranjal Awasthi
,
Nishanth Dikkala
,
Pritish Kamath
ICML
2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
NeurIPS
2022
Private Isotonic Regression
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
NeurIPS
2022
Understanding the Eluder Dimension
Gene Li
,
Pritish Kamath
,
Dylan J Foster
,
Nati Srebro
AISTATS
2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
,
Akilesh Tangella
,
Danica Sutherland
,
Nathan Srebro
NeurIPS
2021
On the Power of Differentiable Learning Versus PAC and SQ Learning
Emmanuel Abbe
,
Pritish Kamath
,
Eran Malach
,
Colin Sandon
,
Nathan Srebro
ICML
2021
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
Eran Malach
,
Pritish Kamath
,
Emmanuel Abbe
,
Nathan Srebro
COLT
2020
Approximate Is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity
Pritish Kamath
,
Omar Montasser
,
Nathan Srebro
NeurIPS
2018
Bayesian Inference of Temporal Task Specifications from Demonstrations
Ankit Shah
,
Pritish Kamath
,
Julie A Shah
,
Shen Li