ML Anthology
Authors
Search
About
Kandasamy, Kirthevasan
32 publications
NeurIPS
2025
A Cramér–von Mises Approach to Incentivizing Truthful Data Sharing
Alex Clinton
,
Thomas Zeng
,
Yiding Chen
,
Jerry Zhu
,
Kirthevasan Kandasamy
NeurIPS
2025
Balancing Performance and Costs in Best Arm Identification
Michael O Harding
,
Kirthevasan Kandasamy
ICML
2025
Collaborative Mean Estimation Among Heterogeneous Strategic Agents: Individual Rationality, Fairness, and Truthful Contribution
Alex Clinton
,
Yiding Chen
,
Jerry Zhu
,
Kirthevasan Kandasamy
NeurIPS
2024
Learning to Price Homogeneous Data
Keran Chen
,
Joon Suk Huh
,
Kirthevasan Kandasamy
ICML
2024
Nash Incentive-Compatible Online Mechanism Learning via Weakly Differentially Private Online Learning
Joon Suk Huh
,
Kirthevasan Kandasamy
AISTATS
2023
Active Cost-Aware Labeling of Streaming Data
Ting Cai
,
Kirthevasan Kandasamy
NeurIPS
2023
Mechanism Design for Collaborative Normal Mean Estimation
Yiding Chen
,
Xiaojin Zhu
,
Kirthevasan Kandasamy
JMLR
2023
VCG Mechanism Design with Unknown Agent Values Under Stochastic Bandit Feedback
Kirthevasan Kandasamy
,
Joseph E Gonzalez
,
Michael I Jordan
,
Ion Stoica
AISTATS
2022
Learning Competitive Equilibria in Exchange Economies with Bandit Feedback
Wenshuo Guo
,
Kirthevasan Kandasamy
,
Joseph Gonzalez
,
Michael Jordan
,
Ion Stoica
ICML
2021
Resource Allocation in Multi-Armed Bandit Exploration: Overcoming Sublinear Scaling with Adaptive Parallelism
Brijen Thananjeyan
,
Kirthevasan Kandasamy
,
Ion Stoica
,
Michael Jordan
,
Ken Goldberg
,
Joseph Gonzalez
AISTATS
2020
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
,
Sailun Xu
,
Kirthevasan Kandasamy
,
Willie Neiswanger
,
Barnabas Poczos
,
Jeff Schneider
,
Eric Xing
JMLR
2020
Tuning Hyperparameters Without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
,
Karun Raju Vysyaraju
,
Willie Neiswanger
,
Biswajit Paria
,
Christopher R. Collins
,
Jeff Schneider
,
Barnabas Poczos
,
Eric P. Xing
UAI
2019
A Flexible Framework for Multi-Objective Bayesian Optimization Using Random Scalarizations
Biswajit Paria
,
Kirthevasan Kandasamy
,
Barnabás Póczos
JAIR
2019
Multi-Fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Junier B. Oliva
,
Jeff G. Schneider
,
Barnabás Póczos
ICML
2019
Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments
Kirthevasan Kandasamy
,
Willie Neiswanger
,
Reed Zhang
,
Akshay Krishnamurthy
,
Jeff Schneider
,
Barnabas Poczos
AISTATS
2019
Noisy Blackbox Optimization Using Multi-Fidelity Queries: A Tree Search Approach
Rajat Sen
,
Kirthevasan Kandasamy
,
Sanjay Shakkottai
NeurIPS
2019
Offline Contextual Bayesian Optimization
Ian Char
,
Youngseog Chung
,
Willie Neiswanger
,
Kirthevasan Kandasamy
,
Andrew Oakleigh Nelson
,
Mark Boyer
,
Egemen Kolemen
,
Jeff Schneider
ICML
2018
Multi-Fidelity Black-Box Optimization with Hierarchical Partitions
Rajat Sen
,
Kirthevasan Kandasamy
,
Sanjay Shakkottai
NeurIPS
2018
Neural Architecture Search with Bayesian Optimisation and Optimal Transport
Kirthevasan Kandasamy
,
Willie Neiswanger
,
Jeff Schneider
,
Barnabas Poczos
,
Eric P Xing
AISTATS
2018
Parallelised Bayesian Optimisation via Thompson Sampling
Kirthevasan Kandasamy
,
Akshay Krishnamurthy
,
Jeff Schneider
,
Barnabás Póczos
ICLR
2017
Batch Policy Gradient Methods for Improving Neural Conversation Models
Kirthevasan Kandasamy
,
Yoram Bachrach
,
Ryota Tomioka
,
Daniel Tarlow
,
David Carter
ICML
2017
Multi-Fidelity Bayesian Optimisation with Continuous Approximations
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Jeff Schneider
,
Barnabás Póczos
ICML
2016
Additive Approximations in High Dimensional Nonparametric Regression via the SALSA
Kirthevasan Kandasamy
,
Yaoliang Yu
NeurIPS
2016
Gaussian Process Bandit Optimisation with Multi-Fidelity Evaluations
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Junier B Oliva
,
Jeff Schneider
,
Barnabas Poczos
AISTATS
2016
High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models
Chun-Liang Li
,
Kirthevasan Kandasamy
,
Barnabás Póczos
,
Jeff G. Schneider
NeurIPS
2016
Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices
Kirthevasan Kandasamy
,
Maruan Al-Shedivat
,
Eric P Xing
NeurIPS
2016
The Multi-Fidelity Multi-Armed Bandit
Kirthevasan Kandasamy
,
Gautam Dasarathy
,
Barnabas Poczos
,
Jeff Schneider
IJCAI
2015
Bayesian Active Learning for Posterior Estimation - IJCAI-15 Distinguished Paper
Kirthevasan Kandasamy
,
Jeff G. Schneider
,
Barnabás Póczos
ICML
2015
High Dimensional Bayesian Optimisation and Bandits via Additive Models
Kirthevasan Kandasamy
,
Jeff Schneider
,
Barnabas Poczos
NeurIPS
2015
Nonparametric Von Mises Estimators for Entropies, Divergences and Mutual Informations
Kirthevasan Kandasamy
,
Akshay Krishnamurthy
,
Barnabas Poczos
,
Larry Wasserman
,
James M Robins
AISTATS
2015
On Estimating L22 Divergence
Akshay Krishnamurthy
,
Kirthevasan Kandasamy
,
Barnabás Póczos
,
Larry A. Wasserman
ICML
2014
Nonparametric Estimation of Renyi Divergence and Friends
Akshay Krishnamurthy
,
Kirthevasan Kandasamy
,
Barnabas Poczos
,
Larry Wasserman