Kandemir, Melih

19 publications

TMLR 2025 Overcoming Non-Stationary Dynamics with Evidential Proximal Policy Optimization Abdullah Akgül, Gulcin Baykal, Manuel Haussmann, Melih Kandemir
L4DC 2024 Continual Learning of Multi-Modal Dynamics with External Memory Abdullah Akgül, Gozde Unal, Melih Kandemir
NeurIPS 2024 Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning Abdullah Akgül, Manuel Haußmann, Melih Kandemir
TMLR 2023 Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems Andreas Look, Barbara Rakitsch, Melih Kandemir, Jan Peters
ACML 2023 Estimation of Counterfactual Interventions Under Uncertainties Juliane Weilbach, Sebastian Gerwinn, Melih Kandemir, Martin Fraenzle
NeurIPS 2023 Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures Hamish Flynn, David Reeb, Melih Kandemir, Jan R Peters
TMLR 2023 Meta Continual Learning on Graphs with Experience Replay Altay Unal, Abdullah Akgül, Melih Kandemir, Gozde Unal
ICLR 2022 Evidential Turing Processes Melih Kandemir, Abdullah Akgül, Manuel Haussmann, Gozde Unal
NeurIPS 2022 Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs Çağatay Yıldız, Melih Kandemir, Barbara Rakitsch
L4DC 2022 Traversing Time with Multi-Resolution Gaussian Process State-Space Models Krista Longi, Jakob Lindinger, Olaf Duennbier, Melih Kandemir, Arto Klami, Barbara Rakitsch
AISTATS 2021 Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes Manuel Haußmann, Sebastian Gerwinn, Andreas Look, Barbara Rakitsch, Melih Kandemir
IJCAI 2019 Deep Active Learning with Adaptive Acquisition Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir
UAI 2019 Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir
NeurIPS 2018 Evidential Deep Learning to Quantify Classification Uncertainty Murat Sensoy, Lance Kaplan, Melih Kandemir
CVPR 2017 Variational Bayesian Multiple Instance Learning with Gaussian Processes Manuel Haussmann, Fred A. Hamprecht, Melih Kandemir
ECCV 2016 Gaussian Process Density Counting from Weak Supervision Matthias von Borstel, Melih Kandemir, Philip Schmidt, Madhavi K. Rao, Kumar T. Rajamani, Fred A. Hamprecht
ICML 2015 Asymmetric Transfer Learning with Deep Gaussian Processes Melih Kandemir
UAI 2014 Instance Label Prediction by Dirichlet Process Multiple Instance Learning Melih Kandemir, Fred A. Hamprecht
ECML-PKDD 2012 Unsupervised Inference of Auditory Attention from Biosensors Melih Kandemir, Arto Klami, Akos Vetek, Samuel Kaski