ML Anthology
Authors
Search
About
Kaplan, Haim
24 publications
ICML
2025
Nearly Optimal Sample Complexity for Learning with Label Proportions
Robert Istvan Busa-Fekete
,
Travis Dick
,
Claudio Gentile
,
Haim Kaplan
,
Tomer Koren
,
Uri Stemmer
NeurIPS
2025
Private Set Union with Multiple Contributions
Travis Dick
,
Haim Kaplan
,
Alex Kulesza
,
Uri Stemmer
,
Ziteng Sun
,
Ananda Theertha Suresh
NeurIPS
2024
Learning-Augmented Algorithms with Explicit Predictors
Marek Eliáš
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
NeurIPS
2023
Black-Box Differential Privacy for Interactive ML
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
,
Kobbi Nissim
,
Uri Stemmer
ICML
2023
Concurrent Shuffle Differential Privacy Under Continual Observation
Jay Tenenbaum
,
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
ICML
2022
Differentially Private Approximate Quantiles
Haim Kaplan
,
Shachar Schnapp
,
Uri Stemmer
ICML
2022
FriendlyCore: Practical Differentially Private Aggregation
Eliad Tsfadia
,
Edith Cohen
,
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
COLT
2022
Monotone Learning
Olivier J Bousquet
,
Amit Daniely
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
,
Uri Stemmer
NeurIPS
2021
Differentially Private Multi-Armed Bandits in the Shuffle Model
Jay Tenenbaum
,
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
ICML
2021
Differentially-Private Clustering of Easy Instances
Edith Cohen
,
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
,
Eliad Tsfadia
COLT
2021
Online Markov Decision Processes with Aggregate Bandit Feedback
Alon Cohen
,
Haim Kaplan
,
Tomer Koren
,
Yishay Mansour
COLT
2021
The Sparse Vector Technique, Revisited
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
NeurIPS
2020
Adversarially Robust Streaming Algorithms via Differential Privacy
Avinatan Hasidim
,
Haim Kaplan
,
Yishay Mansour
,
Yossi Matias
,
Uri Stemmer
AAAI
2020
Apprenticeship Learning via Frank-Wolfe
Tom Zahavy
,
Alon Cohen
,
Haim Kaplan
,
Yishay Mansour
ICML
2020
Near-Optimal Regret Bounds for Stochastic Shortest Path
Aviv Rosenberg
,
Alon Cohen
,
Yishay Mansour
,
Haim Kaplan
ALT
2020
Planning in Hierarchical Reinforcement Learning: Guarantees for Using Local Policies
Tom Zahavy
,
Avinatan Hasidim
,
Haim Kaplan
,
Yishay Mansour
NeurIPS
2020
Private Learning of Halfspaces: Simplifying the Construction and Reducing the Sample Complexity
Haim Kaplan
,
Yishay Mansour
,
Uri Stemmer
,
Eliad Tsfadia
COLT
2020
Privately Learning Thresholds: Closing the Exponential Gap
Haim Kaplan
,
Katrina Ligett
,
Yishay Mansour
,
Moni Naor
,
Uri Stemmer
ALT
2020
Thompson Sampling for Adversarial Bit Prediction
Yuval Lewi
,
Haim Kaplan
,
Yishay Mansour
UAI
2020
Unknown Mixing Times in Apprenticeship and Reinforcement Learning
Tom Zahavy
,
Alon Cohen
,
Haim Kaplan
,
Yishay Mansour
ICML
2019
Differentially Private Learning of Geometric Concepts
Haim Kaplan
,
Yishay Mansour
,
Yossi Matias
,
Uri Stemmer
NeurIPS
2019
Learning to Screen
Alon Cohen
,
Avinatan Hassidim
,
Haim Kaplan
,
Yishay Mansour
,
Shay Moran
AAAI
2018
Clustering Small Samples with Quality Guarantees: Adaptivity with One2all PPS
Edith Cohen
,
Shiri Chechik
,
Haim Kaplan
NeurIPS
2018
Differentially Private K-Means with Constant Multiplicative Error
Uri Stemmer
,
Haim Kaplan