ML Anthology
Authors
Search
About
Kapoor, Sanyam
10 publications
ICLR
2025
Compute-Optimal LLMs Provably Generalize Better with Scale
Marc Anton Finzi
,
Sanyam Kapoor
,
Diego Granziol
,
Anming Gu
,
Christopher De Sa
,
J Zico Kolter
,
Andrew Gordon Wilson
NeurIPS
2024
Large Language Models Must Be Taught to Know What They Don’t Know
Sanyam Kapoor
,
Nate Gruver
,
Manley Roberts
,
Katherine Collins
,
Arka Pal
,
Umang Bhatt
,
Adrian Weller
,
Samuel Dooley
,
Micah Goldblum
,
Andrew Gordon Wilson
ICML
2023
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner
,
Sanyam Kapoor
,
Shikai Qiu
,
Andrew Gordon Wilson
NeurIPS
2023
Should We Learn Most Likely Functions or Parameters?
Shikai Qiu
,
Tim G. J. Rudner
,
Sanyam Kapoor
,
Andrew G Wilson
NeurIPS
2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
,
Wesley J Maddox
,
Pavel Izmailov
,
Andrew G Wilson
NeurIPS
2022
PAC-Bayes Compression Bounds so Tight That They Can Explain Generalization
Sanae Lotfi
,
Marc Finzi
,
Sanyam Kapoor
,
Andres Potapczynski
,
Micah Goldblum
,
Andrew G Wilson
ICMLW
2022
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior
Ravid Shwartz-Ziv
,
Micah Goldblum
,
Hossein Souri
,
Sanyam Kapoor
,
Chen Zhu
,
Yann LeCun
,
Andrew Gordon Wilson
NeurIPS
2022
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
Ravid Shwartz-Ziv
,
Micah Goldblum
,
Hossein Souri
,
Sanyam Kapoor
,
Chen Zhu
,
Yann LeCun
,
Andrew G Wilson
ICML
2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
,
Marc Finzi
,
Ke Alexander Wang
,
Andrew Gordon Gordon Wilson
ICML
2021
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
,
Theofanis Karaletsos
,
Thang D Bui