Kapoor, Shubham

5 publications

AISTATS 2025 ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables Sebastian Pineda Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir Ansari, Lorenzo Stella, Huibin Shen, Hugo Henri Joseph Senetaire, Ali Caner Turkmen, Oleksandr Shchur, Danielle C. Maddix, Michael Bohlke-Schneider, Bernie Wang, Syama Sundar Rangapuram
TMLR 2024 Chronos: Learning the Language of Time Series Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, Bernie Wang
AISTATS 2023 Coherent Probabilistic Forecasting of Temporal Hierarchies Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim Januschowski, Yuyang Wang, Michael Bohlke-Schneider
NeurIPSW 2022 Adaptive Sampling for Probabilistic Forecasting Under Distribution Shift Luca Masserano, Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Youngsuk Park, Michael Bohlke-Schneider
ICLR 2022 PSA-GAN: Progressive Self Attention GANs for Synthetic Time Series Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan, Valentin Flunkert, Jan Gasthaus, Tim Januschowski