Kawaguchi, Kenji

87 publications

ICLRW 2025 Effortless Efficiency: Low-Cost Pruning of Diffusion Models Yang Zhang, Er Jin, Yanfei Dong, Ashkan Khakzar, Philip Torr, Johannes Stegmaier, Kenji Kawaguchi
ICLRW 2025 GuardReasoner: Towards Reasoning-Based LLM Safeguards Yue Liu, Hongcheng Gao, Shengfang Zhai, Jun Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji Kawaguchi, Jiaheng Zhang, Bryan Hooi
ICLR 2025 Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain
ICML 2025 Minimalist Concept Erasure in Generative Models Yang Zhang, Er Jin, Yanfei Dong, Yixuan Wu, Philip Torr, Ashkan Khakzar, Johannes Stegmaier, Kenji Kawaguchi
ICLR 2025 NExT-Mol: 3D Diffusion Meets 1d Language Modeling for 3D Molecule Generation Zhiyuan Liu, Yanchen Luo, Han Huang, Enzhi Zhang, Sihang Li, Junfeng Fang, Yaorui Shi, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua
NeurIPS 2025 Reward-Instruct: A Reward-Centric Approach to Fast Photo-Realistic Image Generation Yihong Luo, Tianyang Hu, Weijian Luo, Kenji Kawaguchi, Jing Tang
AAAI 2025 Single Character Perturbations Break LLM Alignment Leon Lin, Hannah Brown, Kenji Kawaguchi, Michael Shieh
NeurIPS 2025 The Emergence of Abstract Thought in Large Language Models Beyond Any Language Yuxin Chen, Yiran Zhao, Yang Zhang, An Zhang, Kenji Kawaguchi, Shafiq Joty, Junnan Li, Tat-Seng Chua, Michael Qizhe Shieh, Wenxuan Zhang
NeurIPS 2025 Towards Unified and Lossless Latent Space for 3D Molecular Latent Diffusion Modeling Yanchen Luo, Zhiyuan Liu, Yi Zhao, Sihang Li, Hengxing Cai, Kenji Kawaguchi, Tat-Seng Chua, Yang Zhang, Xiang Wang
ICLR 2025 Understanding and Enhancing Safety Mechanisms of LLMs via Safety-Specific Neuron Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal, Kenji Kawaguchi, Michael Shieh
ICML 2025 Unnatural Languages Are Not Bugs but Features for LLMs Keyu Duan, Yiran Zhao, Zhili Feng, Jinjie Ni, Tianyu Pang, Qian Liu, Tianle Cai, Longxu Dou, Kenji Kawaguchi, Anirudh Goyal, J Zico Kolter, Michael Qizhe Shieh
ICLRW 2025 Unnatural Languages Are Not Bugs but Features for LLMs Keyu Duan, Yiran Zhao, Zhili Feng, Jinjie Ni, Tianyu Pang, Qian Liu, Tianle Cai, Longxu Dou, Kenji Kawaguchi, Anirudh Goyal, J Zico Kolter, Michael Qizhe Shieh
TMLR 2025 When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training Haonan Wang, Qian Liu, Chao Du, Tongyao Zhu, Cunxiao Du, Kenji Kawaguchi, Tianyu Pang
TMLR 2024 A Dual-Perspective Approach to Evaluating Feature Attribution Methods Yawei Li, Yang Zhang, Kenji Kawaguchi, Ashkan Khakzar, Bernd Bischl, Mina Rezaei
NeurIPS 2024 Accelerating Greedy Coordinate Gradient and General Prompt Optimization via Probe Sampling Yiran Zhao, Wenyue Zheng, Tianle Cai, Xuan Long Do, Kenji Kawaguchi, Anirudh Goyal, Michael Qizhe Shieh
ICML 2024 Deep Regression Representation Learning with Topology Shihao Zhang, Kenji Kawaguchi, Angela Yao
ICML 2024 Drug Discovery with Dynamic Goal-Aware Fragments Seul Lee, Seanie Lee, Kenji Kawaguchi, Sung Ju Hwang
ICLRW 2024 Drug Discovery with Dynamic Goal-Aware Fragments Seul Lee, Seanie Lee, Kenji Kawaguchi, Sung Ju Hwang
ECCV 2024 Enhancing Semantic Fidelity in Text-to-Image Synthesis: Attention Regulation in Diffusion Models Yang Zhang, Tze Tzun Teoh, Wei Hern Lim, Kenji Kawaguchi
ICML 2024 Exact Conversion of In-Context Learning to Model Weights in Linearized-Attention Transformers Brian K Chen, Tianyang Hu, Hui Jin, Hwee Kuan Lee, Kenji Kawaguchi
NeurIPSW 2024 FinerCut: Finer-Grained Interpretable Layer Pruning for Large Language Models Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, Kenji Kawaguchi
NeurIPS 2024 How Do Large Language Models Handle Multilingualism? Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, Lidong Bing
NeurIPSW 2024 In-Context Learning Behaves as a Greedy Layer-Wise Gradient Descent Algorithm Brian K Chen, Tianyang Hu, Hui Jin, Hwee Kuan Lee, Kenji Kawaguchi
NeurIPSW 2024 Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain
NeurIPSW 2024 LoReUn: Data Itself Implicitly Provides Cues to Improve Machine Unlearning Xiang Li, Qianli Shen, Haonan Wang, Kenji Kawaguchi
NeurIPS 2024 Memory-Efficient Gradient Unrolling for Large-Scale Bi-Level Optimization Qianli Shen, Yezhen Wang, Zhouhao Yang, Xiang Li, Haonan Wang, Yang Zhang, Jonathan Scarlett, Zhanxing Zhu, Kenji Kawaguchi
NeurIPSW 2024 Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, Michael Shieh
ICML 2024 PlanDQ: Hierarchical Plan Orchestration via D-Conductor and Q-Performer Chang Chen, Junyeob Baek, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn
ICML 2024 Referee Can Play: An Alternative Approach to Conditional Generation via Model Inversion Xuantong Liu, Tianyang Hu, Wenjia Wang, Kenji Kawaguchi, Yuan Yao
ICLR 2024 Scalable and Effective Implicit Graph Neural Networks on Large Graphs Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei Wang, Chaosheng Dong, Xiaokui Xiao
ICLR 2024 Self-Supervised Dataset Distillation for Transfer Learning Dong Bok Lee, Seanie Lee, Joonho Ko, Kenji Kawaguchi, Juho Lee, Sung Ju Hwang
ICLR 2024 Simple Hierarchical Planning with Diffusion Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, Sungjin Ahn
NeurIPS 2024 Stochastic Taylor Derivative Estimator: Efficient Amortization for Arbitrary Differential Operators Zekun Shi, Zheyuan Hu, Min Lin, Kenji Kawaguchi
ICML 2024 The Stronger the Diffusion Model, the Easier the Backdoor: Data Poisoning to Induce Copyright BreachesWithout Adjusting Finetuning Pipeline Haonan Wang, Qianli Shen, Yao Tong, Yang Zhang, Kenji Kawaguchi
ICML 2024 The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling Jiajun Ma, Shuchen Xue, Tianyang Hu, Wenjia Wang, Zhaoqiang Liu, Zhenguo Li, Zhi-Ming Ma, Kenji Kawaguchi
ICLR 2024 Towards 3D Molecule-Text Interpretation in Language Models Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua, Qi Tian
AAAI 2024 Towards Continual Learning Desiderata via HSIC-Bottleneck Orthogonalization and Equiangular Embedding Depeng Li, Tianqi Wang, Junwei Chen, Qining Ren, Kenji Kawaguchi, Zhigang Zeng
ICLR 2024 Towards Robust Out-of-Distribution Generalization Bounds via Sharpness Yingtian Zou, Kenji Kawaguchi, Yingnan Liu, Jiashuo Liu, Mong-Li Lee, Wynne Hsu
ICML 2024 Unsupervised Concept Discovery Mitigates Spurious Correlations Md Rifat Arefin, Yan Zhang, Aristide Baratin, Francesco Locatello, Irina Rish, Dianbo Liu, Kenji Kawaguchi
CVPR 2024 VA3: Virtually Assured Amplification Attack on Probabilistic Copyright Protection for Text-to-Image Generative Models Xiang Li, Qianli Shen, Kenji Kawaguchi
AAAI 2023 Adaptive Discrete Communication Bottlenecks with Dynamic Vector Quantization for Heterogeneous Representational Coarseness Dianbo Liu, Alex Lamb, Xu Ji, Pascal Tikeng Notsawo Jr., Michael Mozer, Yoshua Bengio, Kenji Kawaguchi
NeurIPS 2023 An Information Theory Perspective on Variance-Invariance-Covariance Regularization Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim G. J. Rudner, Yann LeCun
NeurIPSW 2023 AttributionLab: Faithfulness of Feature Attribution Under Controllable Environments Yang Zhang, Yawei Li, Hannah Brown, Mina Rezaei, Bernd Bischl, Philip Torr, Ashkan Khakzar, Kenji Kawaguchi
ICML 2023 Auxiliary Learning as an Asymmetric Bargaining Game Aviv Shamsian, Aviv Navon, Neta Glazer, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya
ICLR 2023 D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory Tianbo Li, Min Lin, Zheyuan Hu, Kunhao Zheng, Giovanni Vignale, Kenji Kawaguchi, A.H. Castro Neto, Kostya S. Novoselov, Shuicheng Yan
ICML 2023 Discrete Key-Value Bottleneck Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Curtis Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf
ICML 2023 GFlowOut: Dropout with Generative Flow Networks Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio
ICML 2023 How Does Information Bottleneck Help Deep Learning? Kenji Kawaguchi, Zhun Deng, Xu Ji, Jiaoyang Huang
NeurIPS 2023 Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, Sung Ju Hwang
UAI 2023 MixupE: Understanding and Improving Mixup from Directional Derivative Perspective Yingtian Zou, Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi
ICLRW 2023 Neural Integral Functionals Zheyuan Hu, Tianbo Li, Zekun Shi, Kunhao Zheng, Giovanni Vignale, Kenji Kawaguchi, Shuicheng Yan, Min Lin
NeurIPS 2023 PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification Qianli Shen, Wai Hoh Tang, Zhun Deng, Apostolos Psaros, Kenji Kawaguchi
NeurIPS 2023 Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, Tat-Seng Chua
ICML 2023 Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation Jeffrey Willette, Seanie Lee, Bruno Andreis, Kenji Kawaguchi, Juho Lee, Sung Ju Hwang
ICLR 2023 Self-Distillation for Further Pre-Training of Transformers Seanie Lee, Minki Kang, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi
NeurIPS 2023 Self-Evaluation Guided Beam Search for Reasoning Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, Michael Xie
ICLR 2023 Self-Supervised Set Representation Learning for Unsupervised Meta-Learning Dong Bok Lee, Seanie Lee, Kenji Kawaguchi, Yunji Kim, Jihwan Bang, Jung-Woo Ha, Sung Ju Hwang
ICLR 2023 Simplicial Embeddings in Self-Supervised Learning and Downstream Classification Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji Kawaguchi, Aaron Courville
TMLR 2023 Single-Pass Contrastive Learning Can Work for Both Homophilic and Heterophilic Graph Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, Xiaokui Xiao
NeurIPSW 2023 The Stronger the Diffusion Model, the Easier the Backdoor: Data Poisoning to Induce Copyright Breaches Without Adjusting Finetuning Pipeline Haonan Wang, Qianli Shen, Yao Tong, Yang Zhang, Kenji Kawaguchi
NeurIPS 2022 Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex M Lamb, Kenji Kawaguchi, Xin Li, Romain Laroche, Yoshua Bengio, Remi Tachet des Combes
NeurIPS 2022 MGNNI: Multiscale Graph Neural Networks with Implicit Layers Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Xiaokui Xiao
ICML 2022 Multi-Task Learning as a Bargaining Game Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya
ICML 2022 Robustness Implies Generalization via Data-Dependent Generalization Bounds Kenji Kawaguchi, Zhun Deng, Kyle Luh, Jiaoyang Huang
NeurIPS 2022 Set-Based Meta-Interpolation for Few-Task Meta-Learning Seanie Lee, Bruno Andreis, Kenji Kawaguchi, Juho Lee, Sung Ju Hwang
ICML 2022 When and How Mixup Improves Calibration Linjun Zhang, Zhun Deng, Kenji Kawaguchi, James Zou
AAAI 2021 A Recipe for Global Convergence Guarantee in Deep Neural Networks Kenji Kawaguchi, Qingyun Sun
NeurIPS 2021 Adversarial Training Helps Transfer Learning via Better Representations Zhun Deng, Linjun Zhang, Kailas Vodrahalli, Kenji Kawaguchi, James Y Zou
NeurIPSW 2021 Catastrophic Failures of Neural Active Learning on Heteroskedastic Distributions Savya Khosla, Alex Lamb, Jordan T. Ash, Cyril Zhang, Kenji Kawaguchi
NeurIPS 2021 Discrete-Valued Neural Communication Dianbo Liu, Alex M Lamb, Kenji Kawaguchi, Anirudh Goyal ALIAS PARTH Goyal, Chen Sun, Michael Mozer, Yoshua Bengio
NeurIPS 2021 EIGNN: Efficient Infinite-Depth Graph Neural Networks Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, Xiaokui Xiao
AAAI 2021 GraphMix: Improved Training of GNNs for Semi-Supervised Learning Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang
ICLR 2021 How Does Mixup Help with Robustness and Generalization? Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, James Zou
NeurIPS 2021 Noether Networks: Meta-Learning Useful Conserved Quantities Ferran Alet, Dylan Doblar, Allan Zhou, Josh Tenenbaum, Kenji Kawaguchi, Chelsea Finn
ICLR 2021 On the Theory of Implicit Deep Learning: Global Convergence with Implicit Layers Kenji Kawaguchi
ICML 2021 Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi
NeurIPS 2021 Tailoring: Encoding Inductive Biases by Optimizing Unsupervised Objectives at Prediction Time Ferran Alet, Maria Bauza, Kenji Kawaguchi, Nurullah Giray Kuru, Tomás Lozano-Pérez, Leslie P. Kaelbling
ICML 2021 Towards Domain-Agnostic Contrastive Learning Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, Quoc Le
NeurIPS 2021 Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization Clement Gehring, Kenji Kawaguchi, Jiaoyang Huang, Leslie P. Kaelbling
AISTATS 2020 Elimination of All Bad Local Minima in Deep Learning Kenji Kawaguchi, Leslie Kaelbling
AISTATS 2020 Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization Kenji Kawaguchi, Haihao Lu
AAAI 2018 Deep Semi-Random Features for Nonlinear Function Approximation Kenji Kawaguchi, Bo Xie, Le Song
AAAI 2016 Bounded Optimal Exploration in MDP Kenji Kawaguchi
NeurIPS 2016 Deep Learning Without Poor Local Minima Kenji Kawaguchi
JAIR 2016 Global Continuous Optimization with Error Bound and Fast Convergence Kenji Kawaguchi, Yu Maruyama, Xiaoyu Zheng
NeurIPS 2015 Bayesian Optimization with Exponential Convergence Kenji Kawaguchi, Leslie Pack Kaelbling, Tomás Lozano-Pérez
IJCAI 2013 Prior-Free Exploration Bonus for and Beyond near Bayes-Optimal Behavior Kenji Kawaguchi, Hiroshi Sato