ML Anthology
Authors
Search
About
Ke, Guolin
23 publications
ICML
2025
Beyond Atoms: Enhancing Molecular Pretrained Representations with 3D Space Modeling
Shuqi Lu
,
Xiaohong Ji
,
Bohang Zhang
,
Lin Yao
,
Siyuan Liu
,
Zhifeng Gao
,
Linfeng Zhang
,
Guolin Ke
ICCV
2025
MolParser: End-to-End Visual Recognition of Molecule Structures in the Wild
Xi Fang
,
Jiankun Wang
,
Xiaochen Cai
,
Shangqian Chen
,
Shuwen Yang
,
Haoyi Tao
,
Nan Wang
,
Lin Yao
,
Linfeng Zhang
,
Guolin Ke
ICLR
2025
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding
Sihang Li
,
Jin Huang
,
Jiaxi Zhuang
,
Yaorui Shi
,
Xiaochen Cai
,
Mingjun Xu
,
Xiang Wang
,
Linfeng Zhang
,
Guolin Ke
,
Hengxing Cai
TMLR
2024
3D Molecular Generation via Virtual Dynamics
Shuqi Lu
,
Lin Yao
,
Xi Chen
,
Hang Zheng
,
Di He
,
Guolin Ke
NeurIPS
2024
Exploring Molecular Pretraining Model at Scale
Xiaohong Ji
,
Zhen Wang
,
Zhifeng Gao
,
Hang Zheng
,
Linfeng Zhang
,
Guolin Ke
,
Weinan E
NeurIPS
2024
S-MolSearch: 3D Semi-Supervised Contrastive Learning for Bioactive Molecule Search
Gengmo Zhou
,
Zhen Wang
,
Feng Yu
,
Guolin Ke
,
Zhewei Wei
,
Zhifeng Gao
NeurIPSW
2024
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding
Sihang Li
,
Jin Huang
,
Jiaxi Zhuang
,
Yaorui Shi
,
Xiaochen Cai
,
Mingjun Xu
,
Xiang Wang
,
Linfeng Zhang
,
Guolin Ke
,
Hengxing Cai
NeurIPSW
2023
Amalga: Designable Protein Backbone Generation with Folding and Inverse Folding Guidance
Shugao Chen
,
Ziyao Li
,
Xiangxiang Zeng
,
Guolin Ke
ICLRW
2023
Do Deep Learning Methods Really Perform Better in Molecular Conformation Generation?
Gengmo Zhou
,
Zhifeng Gao
,
Zhewei Wei
,
Hang Zheng
,
Guolin Ke
ICLRW
2023
Do Deep Learning Models Really Outperform Traditional Approaches in Molecular Docking?
Yuejiang Yu
,
Shuqi Lu
,
Zhifeng Gao
,
Hang Zheng
,
Guolin Ke
NeurIPSW
2023
UMD-Fit: Generating Realistic Ligand Conformations for Distance-Based Deep Docking Models
Eric Alcaide
,
Ziyao Li
,
Hang Zheng
,
Zhifeng Gao
,
Guolin Ke
ICLRW
2023
Uni-Fold MuSSe: De Novo Protein Complex Prediction with Protein Language Models
Jinhua Zhu
,
Zhenyu He
,
Ziyao Li
,
Guolin Ke
,
Linfeng Zhang
ICLR
2023
Uni-Mol: A Universal 3D Molecular Representation Learning Framework
Gengmo Zhou
,
Zhifeng Gao
,
Qiankun Ding
,
Hang Zheng
,
Hongteng Xu
,
Zhewei Wei
,
Linfeng Zhang
,
Guolin Ke
NeurIPS
2022
Quantized Training of Gradient Boosting Decision Trees
Yu Shi
,
Guolin Ke
,
Zhuoming Chen
,
Shuxin Zheng
,
Tie-Yan Liu
NeurIPS
2021
Do Transformers Really Perform Badly for Graph Representation?
Chengxuan Ying
,
Tianle Cai
,
Shengjie Luo
,
Shuxin Zheng
,
Guolin Ke
,
Di He
,
Yanming Shen
,
Tie-Yan Liu
ICML
2021
How Could Neural Networks Understand Programs?
Dinglan Peng
,
Shuxin Zheng
,
Yatao Li
,
Guolin Ke
,
Di He
,
Tie-Yan Liu
ICLR
2021
Rethinking Positional Encoding in Language Pre-Training
Guolin Ke
,
Di He
,
Tie-Yan Liu
NeurIPS
2021
Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
Shengjie Luo
,
Shanda Li
,
Tianle Cai
,
Di He
,
Dinglan Peng
,
Shuxin Zheng
,
Guolin Ke
,
Liwei Wang
,
Tie-Yan Liu
ICLR
2021
Taking Notes on the Fly Helps Language Pre-Training
Qiyu Wu
,
Chen Xing
,
Yatao Li
,
Guolin Ke
,
Di He
,
Tie-Yan Liu
ECCV
2020
Invertible Image Rescaling
Mingqing Xiao
,
Shuxin Zheng
,
Chang Liu
,
Yaolong Wang
,
Di He
,
Guolin Ke
,
Jiang Bian
,
Zhouchen Lin
,
Tie-Yan Liu
AAAI
2020
Light Multi-Segment Activation for Model Compression
Zhenhui Xu
,
Guolin Ke
,
Jia Zhang
,
Jiang Bian
,
Tie-Yan Liu
NeurIPS
2017
LightGBM: A Highly Efficient Gradient Boosting Decision Tree
Guolin Ke
,
Qi Meng
,
Thomas Finley
,
Taifeng Wang
,
Wei Chen
,
Weidong Ma
,
Qiwei Ye
,
Tie-Yan Liu
NeurIPS
2016
A Communication-Efficient Parallel Algorithm for Decision Tree
Qi Meng
,
Guolin Ke
,
Taifeng Wang
,
Wei Chen
,
Qiwei Ye
,
Zhi-Ming Ma
,
Tie-Yan Liu