ML Anthology
Authors
Search
About
Kearns, Michael
35 publications
ICML
2025
Intersectional Fairness in Reinforcement Learning with Large State and Constraint Spaces
Eric Eaton
,
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
NeurIPSW
2024
Improving LLM Group Fairness on Tabular Data via In-Context Learning
Valeriia Cherepanova
,
Chia-Jung Lee
,
Nil-Jana Akpinar
,
Riccardo Fogliato
,
Martin Andres Bertran
,
Michael Kearns
,
James Zou
NeurIPSW
2024
Improving LLM Group Fairness on Tabular Data via In-Context Learning
Valeriia Cherepanova
,
Chia-Jung Lee
,
Nil-Jana Akpinar
,
Riccardo Fogliato
,
Martin Andres Bertran
,
Michael Kearns
,
James Zou
ICML
2024
Membership Inference Attacks on Diffusion Models via Quantile Regression
Shuai Tang
,
Steven Wu
,
Sergul Aydore
,
Michael Kearns
,
Aaron Roth
NeurIPS
2024
Oracle-Efficient Reinforcement Learning for Max Value Ensembles
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
ICMLW
2024
Oracle-Efficient Reinforcement Learning for Max Value Ensembles
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
NeurIPS
2024
Reconstruction Attacks on Machine Unlearning: Simple Models Are Vulnerable
Martin Bertran
,
Shuai Tang
,
Michael Kearns
,
Jamie Morgenstern
,
Aaron Roth
,
Zhiwei Steven Wu
NeurIPSW
2023
Membership Inference Attack on Diffusion Models via Quantile Regression
Steven Wu
,
Shuai Tang
,
Sergul Aydore
,
Michael Kearns
,
Aaron Roth
ICML
2023
Multicalibration as Boosting for Regression
Ira Globus-Harris
,
Declan Harrison
,
Michael Kearns
,
Aaron Roth
,
Jessica Sorrell
NeurIPSW
2022
Differentially Private Gradient Boosting on Linear Learners for Tabular Data
Saeyoung Rho
,
Cedric Archambeau
,
Sergul Aydore
,
Beyza Ermis
,
Michael Kearns
,
Aaron Roth
,
Shuai Tang
,
Yu-Xiang Wang
,
Steven Wu
CVPR
2022
Mixed Differential Privacy in Computer Vision
Aditya Golatkar
,
Alessandro Achille
,
Yu-Xiang Wang
,
Aaron Roth
,
Michael Kearns
,
Stefano Soatto
ICML
2021
Differentially Private Query Release Through Adaptive Projection
Sergul Aydore
,
William Brown
,
Michael Kearns
,
Krishnaram Kenthapadi
,
Luca Melis
,
Aaron Roth
,
Ankit A. Siva
NeurIPS
2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Saeed Sharifi-Malvajerdi
,
Michael Kearns
,
Aaron Roth
ICML
2019
Differentially Private Fair Learning
Matthew Jagielski
,
Michael Kearns
,
Jieming Mao
,
Alina Oprea
,
Aaron Roth
,
Saeed Sharifi-Malvajerdi
,
Jonathan Ullman
NeurIPS
2018
Online Learning with an Unknown Fairness Metric
Stephen Gillen
,
Christopher Jung
,
Michael Kearns
,
Aaron Roth
ICML
2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
,
Seth Neel
,
Aaron Roth
,
Zhiwei Steven Wu
ICML
2017
Fairness in Reinforcement Learning
Shahin Jabbari
,
Matthew Joseph
,
Michael Kearns
,
Jamie Morgenstern
,
Aaron Roth
ICML
2017
Meritocratic Fairness for Cross-Population Selection
Michael Kearns
,
Aaron Roth
,
Zhiwei Steven Wu
COLT
2017
Predicting with Distributions
Michael Kearns
,
Zhiwei Steven Wu
NeurIPS
2016
Fairness in Learning: Classic and Contextual Bandits
Matthew Joseph
,
Michael Kearns
,
Jamie H Morgenstern
,
Aaron Roth
ICML
2014
Learning from Contagion (Without Timestamps)
Kareem Amin
,
Hoda Heidari
,
Michael Kearns
ICML
2014
Pursuit-Evasion Without Regret, with an Application to Trading
Lili Dworkin
,
Michael Kearns
,
Yuriy Nevmyvaka
ICML
2013
Large-Scale Bandit Problems and KWIK Learning
Jacob Abernethy
,
Kareem Amin
,
Michael Kearns
,
Moez Draief
NeurIPS
2013
Marginals-to-Models Reducibility
Tim Roughgarden
,
Michael Kearns
COLT
2011
Bandits, Query Learning, and the Haystack Dimension
Kareem Amin
,
Michael Kearns
,
Umar Syed
JMLR
2008
Learning from Multiple Sources
Koby Crammer
,
Michael Kearns
,
Jennifer Wortman
NeurIPS
2007
Privacy-Preserving Belief Propagation and Sampling
Michael Kearns
,
Jinsong Tan
,
Jennifer Wortman
NeurIPS
2006
A Small World Threshold for Economic Network Formation
Eyal Even-dar
,
Michael Kearns
NeurIPS
2006
Learning from Multiple Sources
Koby Crammer
,
Michael Kearns
,
Jennifer Wortman
NeurIPS
2005
Learning from Data of Variable Quality
Koby Crammer
,
Michael Kearns
,
Jennifer Wortman
NeurIPS
2004
Economic Properties of Social Networks
Sham M. Kakade
,
Michael Kearns
,
Luis E. Ortiz
,
Robin Pemantle
,
Siddharth Suri
NeurIPS
2003
Algorithms for Interdependent Security Games
Michael Kearns
,
Luis E. Ortiz
NeurIPS
2002
A Note on the Representational Incompatibility of Function Approximation and Factored Dynamics
Eric Allender
,
Sanjeev Arora
,
Michael Kearns
,
Cristopher Moore
,
Alexander Russell
NeurIPS
2002
Nash Propagation for Loopy Graphical Games
Luis E. Ortiz
,
Michael Kearns
NeurIPS
1991
Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods
David Haussler
,
Michael Kearns
,
Manfred Opper
,
Robert Schapire