ML Anthology
Authors
Search
About
Keerthi, S. Sathiya
27 publications
AAAI
2022
Efficient Vertex-Oriented Polytopic Projection for Web-Scale Applications
Rohan Ramanath
,
S. Sathiya Keerthi
,
Yao Pan
,
Konstantin Salomatin
,
Kinjal Basu
JMLR
2018
An Efficient Distributed Learning Algorithm Based on Effective Local Functional Approximations
Dhruv Mahajan
,
Nikunj Agrawal
,
S. Sathiya Keerthi
,
Sundararajan Sellamanickam
,
Leon Bottou
AISTATS
2018
Batch-Expansion Training: An Efficient Optimization Framework
Michal Derezinski
,
Dhruv Mahajan
,
S. Sathiya Keerthi
,
S. V. N. Vishwanathan
,
Markus Weimer
JMLR
2017
A Distributed Block Coordinate Descent Method for Training L1 Regularized Linear Classifiers
Dhruv Mahajan
,
S. Sathiya Keerthi
,
S. Sundararajan
ICML
2017
Gradient Boosted Decision Trees for High Dimensional Sparse Output
Si Si
,
Huan Zhang
,
S. Sathiya Keerthi
,
Dhruv Mahajan
,
Inderjit S. Dhillon
,
Cho-Jui Hsieh
ECML-PKDD
2013
Tractable Semi-Supervised Learning of Complex Structured Prediction Models
Kai-Wei Chang
,
S. Sundararajan
,
S. Sathiya Keerthi
ICML
2008
A Dual Coordinate Descent Method for Large-Scale Linear SVM
Cho-Jui Hsieh
,
Kai-Wei Chang
,
Chih-Jen Lin
,
S. Sathiya Keerthi
,
S. Sundararajan
JMLR
2008
Trust Region Newton Method for Logistic Regression
Chih-Jen Lin
,
Ruby C. Weng
,
S. Sathiya Keerthi
IJCAI
2007
Semi-Supervised Gaussian Process Classifiers
Vikas Sindhwani
,
Wei Chu
,
S. Sathiya Keerthi
ICML
2007
Trust Region Newton Methods for Large-Scale Logistic Regression
Chih-Jen Lin
,
Ruby C. Weng
,
S. Sathiya Keerthi
JMLR
2006
Building Support Vector Machines with Reduced Classifier Complexity
S. Sathiya Keerthi
,
Olivier Chapelle
,
Dennis DeCoste
ICML
2006
Deterministic Annealing for Semi-Supervised Kernel Machines
Vikas Sindhwani
,
S. Sathiya Keerthi
,
Olivier Chapelle
MLJ
2005
A Fast Dual Algorithm for Kernel Logistic Regression
S. Sathiya Keerthi
,
Kaibo Duan
,
Shirish K. Shevade
,
Aun Neow Poo
JMLR
2005
A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs
S. Sathiya Keerthi
,
Dennis DeCoste
ICML
2005
Generalized LARS as an Effective Feature Selection Tool for Text Classification with SVMs
S. Sathiya Keerthi
ICML
2005
New Approaches to Support Vector Ordinal Regression
Wei Chu
,
S. Sathiya Keerthi
NeCo
2003
Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel
S. Sathiya Keerthi
,
Chih-Jen Lin
NeCo
2003
Bayesian Trigonometric Support Vector Classifier
Wei Chu
,
S. Sathiya Keerthi
,
Chong Jin Ong
NeCo
2003
SMO Algorithm for Least-Squares SVM Formulation
S. Sathiya Keerthi
,
Shirish K. Shevade
ICML
2002
A Fast Dual Algorithm for Kernel Logistic Regression
S. Sathiya Keerthi
,
Kaibo Duan
,
Shirish K. Shevade
,
Aun Neow Poo
MLJ
2002
Convergence of a Generalized SMO Algorithm for SVM Classifier Design
S. Sathiya Keerthi
,
Elmer G. Gilbert
ICML
2001
A Unified Loss Function in Bayesian Framework for Support Vector Regression
Wei Chu
,
S. Sathiya Keerthi
,
Chong Jin Ong
NeCo
2001
Improvements to Platt's SMO Algorithm for SVM Classifier Design
S. Sathiya Keerthi
,
Shirish K. Shevade
,
Chiranjib Bhattacharyya
,
K. R. K. Murthy
JAIR
2001
Mean Field Methods for a Special Class of Belief Networks
Chiranjib Bhattacharyya
,
S. Sathiya Keerthi
NeCo
2001
Predictive Approaches for Choosing Hyperparameters in Gaussian Processes
S. Sundararajan
,
S. Sathiya Keerthi
NeurIPS
2000
A Variational Mean-Field Theory for Sigmoidal Belief Networks
Chiranjib Bhattacharyya
,
S. Sathiya Keerthi
NeurIPS
1999
Predictive App Roaches for Choosing Hyperparameters in Gaussian Processes
S. Sundararajan
,
S. Sathiya Keerthi