ML Anthology
Authors
Search
About
Kégl, Balázs
31 publications
ICML
2025
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Abdelhakim Benechehab
,
Vasilii Feofanov
,
Giuseppe Paolo
,
Albert Thomas
,
Maurizio Filippone
,
Balázs Kégl
ICLRW
2025
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
Abdelhakim Benechehab
,
Vasilii Feofanov
,
Giuseppe Paolo
,
Albert Thomas
,
Maurizio Filippone
,
Balázs Kégl
ICLR
2025
Zero-Shot Model-Based Reinforcement Learning Using Large Language Models
Abdelhakim Benechehab
,
Youssef Attia El Hili
,
Ambroise Odonnat
,
Oussama Zekri
,
Albert Thomas
,
Giuseppe Paolo
,
Maurizio Filippone
,
Ievgen Redko
,
Balázs Kégl
ICML
2024
Position: A Call for Embodied AI
Giuseppe Paolo
,
Jonas Gonzalez-Billandon
,
Balázs Kégl
ICLR
2021
Model-Based Micro-Data Reinforcement Learning: What Are the Crucial Model Properties and Which Model to Choose?
Balázs Kégl
,
Gabriel Hurtado
,
Albert Thomas
MLJ
2018
Similarity Encoding for Learning with Dirty Categorical Variables
Patricio Cerda
,
Gaël Varoquaux
,
Balázs Kégl
ICLR
2017
De Novo Drug Design with Deep Generative Models : An Empirical Study
Mehdi Cherti
,
Balázs Kégl
,
Akin Kazakçi
ICLR
2017
Out-of-Class Novelty Generation: An Experimental Foundation
Mehdi Cherti
,
Balázs Kégl
,
Akin Kazakçi
ICLR
2014
Correlation-Based Construction of Neighborhood and Edge Features
Balázs Kégl
COLT
2014
Open Problem: A (missing) Boosting-Type Convergence Result for AdaBoost.MH with Factorized Multi-Class Classifiers
Balázs Kégl
ICLR
2014
The Return of AdaBoost.MH: Multi-Class Hamming Trees
Balázs Kégl
ICML
2013
Collaborative Hyperparameter Tuning
Rémi Bardenet
,
Mátyás Brendel
,
Balázs Kégl
,
Michèle Sebag
ICML
2013
Gossip-Based Distributed Stochastic Bandit Algorithms
Balazs Szorenyi
,
Robert Busa-Fekete
,
Istvan Hegedus
,
Robert Ormandi
,
Mark Jelasity
,
Balazs Kegl
MLJ
2013
Tune and Mix: Learning to Rank Using Ensembles of Calibrated Multi-Class Classifiers
Róbert Busa-Fekete
,
Balázs Kégl
,
Tamás Éltetö
,
György Szarvas
AISTATS
2012
Adaptive Metropolis with Online Relabeling
Remi Bardenet
,
Olivier Cappe
,
Gersende Fort
,
Balazs Kegl
ICML
2012
Fast Classification Using Sparse Decision DAGs
Róbert Busa-Fekete
,
Djalel Benbouzid
,
Balázs Kégl
MLOSS
2012
MULTIBOOST: A Multi-Purpose Boosting Package
Djalel Benbouzid
,
Róbert Busa-Fekete
,
Norman Casagrande
,
François-David Collin
,
Balázs Kégl
ECML-PKDD
2011
A Robust Ranking Methodology Based on Diverse Calibration of AdaBoost
Róbert Busa-Fekete
,
Balázs Kégl
,
Tamás Éltetö
,
György Szarvas
NeurIPS
2011
Algorithms for Hyper-Parameter Optimization
James S. Bergstra
,
Rémi Bardenet
,
Yoshua Bengio
,
Balázs Kégl
ICML
2010
Fast Boosting Using Adversarial Bandits
Róbert Busa-Fekete
,
Balázs Kégl
ICML
2010
Surrogating the Surrogate: Accelerating Gaussian-Process-Based Global Optimization with a Mixture Cross-Entropy Algorithm
Rémi Bardenet
,
Balázs Kégl
ICML
2009
Boosting Products of Base Classifiers
Balázs Kégl
,
Róbert Busa-Fekete
NeurIPS
2007
Learning the 2-D Topology of Images
Nicolas L. Roux
,
Yoshua Bengio
,
Pascal Lamblin
,
Marc Joliveau
,
Balázs Kégl
MLJ
2006
Aggregate Features and ADABOOSTfor Music Classification
James Bergstra
,
Norman Casagrande
,
Dumitru Erhan
,
Douglas Eck
,
Balázs Kégl
NeurIPS
2004
Boosting on Manifolds: Adaptive Regularization of Base Classifiers
Ligen Wang
,
Balázs Kégl
NeurIPS
2004
Generalization Error and Algorithmic Convergence of Median Boosting
Balázs Kégl
COLT
2003
Robust Regression by Boosting the Median
Balázs Kégl
JMLR
2002
Data-Dependent Margin-Based Generalization Bounds for Classification
András Antos
,
Balázs Kégl
,
Tamás Linder
,
Gábor Lugosi
NeurIPS
2002
Intrinsic Dimension Estimation Using Packing Numbers
Balázs Kégl
COLT
2001
Data-Dependent Margin-Based Generalization Bounds for Classification
Balázs Kégl
,
Tamás Linder
,
Gábor Lugosi
NeurIPS
1998
A Polygonal Line Algorithm for Constructing Principal Curves
Balázs Kégl
,
Adam Krzyzak
,
Tamás Linder
,
Kenneth Zeger