Keriven, Nicolas

10 publications

NeurIPS 2025 Taxonomy of Reduction Matrices for Graph Coarsening Antonin Joly, Nicolas Keriven, Aline Roumy
JMLR 2024 Convergence of Message-Passing Graph Neural Networks with Generic Aggregation on Large Random Graphs Matthieu Cordonnier, Nicolas Keriven, Nicolas Tremblay, Samuel Vaiter
TMLR 2024 Gradient Scarcity in Graph Learning with Bilevel Optimization Hashem Ghanem, Samuel Vaiter, Nicolas Keriven
NeurIPS 2024 Graph Coarsening with Message-Passing Guarantees Antonin Joly, Nicolas Keriven
NeurIPS 2023 What Functions Can Graph Neural Networks Compute on Random Graphs? the Role of Positional Encoding Nicolas Keriven, Samuel Vaiter
NeurIPS 2022 Not Too Little, Not Too Much: A Theoretical Analysis of Graph (over)smoothing Nicolas Keriven
NeurIPS 2021 On the Universality of Graph Neural Networks on Large Random Graphs Nicolas Keriven, Alberto Bietti, Samuel Vaiter
NeurIPS 2020 Convergence and Stability of Graph Convolutional Networks on Large Random Graphs Nicolas Keriven, Alberto Bietti, Samuel Vaiter
AISTATS 2019 Support Localization and the Fisher Metric for Off-the-Grid Sparse Regularization Clarice Poon, Nicolas Keriven, Gabriel Peyré
NeurIPS 2019 Universal Invariant and Equivariant Graph Neural Networks Nicolas Keriven, Gabriel Peyré