ML Anthology
Authors
Search
About
Khanna, Rajiv
28 publications
NeurIPS
2025
A Unified Stability Analysis of SAM vs SGD: Role of Data Coherence and Emergence of Simplicity Bias
Wei-Kai Chang
,
Rajiv Khanna
NeurIPS
2025
Stable Coresets via Posterior Sampling: Aligning Induced and Full Loss Landscapes
Wei-Kai Chang
,
Rajiv Khanna
NeurIPS
2025
Structure-Aware Spectral Sparsification via Uniform Edge Sampling
Kaiwen He
,
Petros Drineas
,
Rajiv Khanna
ICLR
2024
A Precise Characterization of SGD Stability Using Loss Surface Geometry
Gregory Dexter
,
Borja Ocejo
,
Sathiya Keerthi
,
Aman Gupta
,
Ayan Acharya
,
Rajiv Khanna
NeurIPS
2024
The Space Complexity of Approximating Logistic Loss
Gregory Dexter
,
Petros Drineas
,
Rajiv Khanna
AISTATS
2023
Fast Feature Selection with Fairness Constraints
Francesco Quinzan
,
Rajiv Khanna
,
Moshik Hershcovitch
,
Sarel Cohen
,
Daniel Waddington
,
Tobias Friedrich
,
Michael W. Mahoney
COLT
2023
Generalization Guarantees via Algorithm-Dependent Rademacher Complexity
Sarah Sachs
,
Tim Erven
,
Liam Hodgkinson
,
Rajiv Khanna
,
Umut Şimşekli
ICML
2022
Generalization Bounds Using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
,
Umut Simsekli
,
Rajiv Khanna
,
Michael Mahoney
AISTATS
2021
Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective
Jacky Zhang
,
Rajiv Khanna
,
Anastasios Kyrillidis
,
Sanmi Koyejo
ICLR
2021
Adversarially-Trained Deep Nets Transfer Better: Illustration on Image Classification
Francisco Utrera
,
Evan Kravitz
,
N. Benjamin Erichson
,
Rajiv Khanna
,
Michael W. Mahoney
NeurIPSW
2021
Distribution Preserving Bayesian Coresets Using Set Constraints
Shovik Guha
,
Rajiv Khanna
,
Oluwasanmi O Koyejo
UAI
2021
Geometric Rates of Convergence for Kernel-Based Sampling Algorithms
Rajiv Khanna
,
Liam Hodgkinson
,
Michael W. Mahoney
IJCAI
2021
Improved Guarantees and a Multiple-Descent Curve for Column Subset Selection and the Nystrom Method (Extended Abstract)
Michal Derezinski
,
Rajiv Khanna
,
Michael W. Mahoney
UAI
2021
LocalNewton: Reducing Communication Rounds for Distributed Learning
Vipul Gupta
,
Avishek Ghosh
,
Michał Dereziński
,
Rajiv Khanna
,
Kannan Ramchandran
,
Michael W. Mahoney
NeurIPS
2020
Boundary Thickness and Robustness in Learning Models
Yaoqing Yang
,
Rajiv Khanna
,
Yaodong Yu
,
Amir Gholami
,
Kurt Keutzer
,
Joseph E Gonzalez
,
Kannan Ramchandran
,
Michael W. Mahoney
NeurIPS
2020
Improved Guarantees and a Multiple-Descent Curve for Column Subset Selection and the Nystrom Method
Michal Derezinski
,
Rajiv Khanna
,
Michael W. Mahoney
AISTATS
2019
Interpreting Black Box Predictions Using Fisher Kernels
Rajiv Khanna
,
Been Kim
,
Joydeep Ghosh
,
Sanmi Koyejo
NeurIPS
2019
Learning Sparse Distributions Using Iterative Hard Thresholding
Jacky Y Zhang
,
Rajiv Khanna
,
Anastasios Kyrillidis
,
Oluwasanmi O Koyejo
NeurIPS
2018
Boosting Black Box Variational Inference
Francesco Locatello
,
Gideon Dresdner
,
Rajiv Khanna
,
Isabel Valera
,
Gunnar Raetsch
AISTATS
2018
Boosting Variational Inference: An Optimization Perspective
Francesco Locatello
,
Rajiv Khanna
,
Joydeep Ghosh
,
Gunnar Rätsch
AISTATS
2018
IHT Dies Hard: Provable Accelerated Iterative Hard Thresholding
Rajiv Khanna
,
Anastasios Kyrillidis
AISTATS
2017
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe
Francesco Locatello
,
Rajiv Khanna
,
Michael Tschannen
,
Martin Jaggi
AISTATS
2017
Information Projection and Approximate Inference for Structured Sparse Variables
Rajiv Khanna
,
Joydeep Ghosh
,
Russell A. Poldrack
,
Oluwasanmi Koyejo
ICML
2017
On Approximation Guarantees for Greedy Low Rank Optimization
Rajiv Khanna
,
Ethan R. Elenberg
,
Alexandros G. Dimakis
,
Joydeep Ghosh
,
Sahand Negahban
AISTATS
2017
Scalable Greedy Feature Selection via Weak Submodularity
Rajiv Khanna
,
Ethan R. Elenberg
,
Alexandros G. Dimakis
,
Sahand N. Negahban
,
Joydeep Ghosh
NeurIPS
2016
Examples Are Not Enough, Learn to Criticize! Criticism for Interpretability
Been Kim
,
Rajiv Khanna
,
Oluwasanmi O Koyejo
AISTATS
2015
Sparse Submodular Probabilistic PCA
Rajiv Khanna
,
Joydeep Ghosh
,
Russell A. Poldrack
,
Oluwasanmi Koyejo
NeurIPS
2014
On Prior Distributions and Approximate Inference for Structured Variables
Oluwasanmi O Koyejo
,
Rajiv Khanna
,
Joydeep Ghosh
,
Russell Poldrack