Khodak, Mikhail

23 publications

TMLR 2025 L2G: Repurposing Language Models for Genomics Tasks Wenduo Cheng, Junhong Shen, Mikhail Khodak, Jian Ma, Ameet Talwalkar
ICLR 2025 Specialized Foundation Models Struggle to Beat Supervised Baselines Zongzhe Xu, Ritvik Gupta, Wenduo Cheng, Alexander Shen, Junhong Shen, Ameet Talwalkar, Mikhail Khodak
ICLR 2024 Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances Mikhail Khodak, Edmond Chow, Maria Florina Balcan, Ameet Talwalkar
NeurIPSW 2024 Specialized Foundation Models Struggle to Beat Supervised Baselines Zongzhe Xu, Ritvik Gupta, Wenduo Cheng, Alexander Shen, Junhong Shen, Ameet Talwalkar, Mikhail Khodak
NeurIPS 2024 SureMap: Simultaneous Mean Estimation for Single-Task and Multi-Task Disaggregated Evaluation Mikhail Khodak, Lester Mackey, Alexandra Chouldechova, Miroslav Dudík
ICLR 2023 AANG : Automating Auxiliary Learning Lucio M. Dery, Paul Michel, Mikhail Khodak, Graham Neubig, Ameet Talwalkar
ICML 2023 Cross-Modal Fine-Tuning: Align Then Refine Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar
NeurIPSW 2023 Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances Mikhail Khodak, Edmond Chow, Maria Florina Balcan, Ameet Talwalkar
ICML 2023 Learning-Augmented Private Algorithms for Multiple Quantile Release Mikhail Khodak, Kareem Amin, Travis Dick, Sergei Vassilvitskii
ICMLW 2023 Learning-Augmented Private Algorithms for Multiple Quantile Release Mikhail Khodak, Kareem Amin, Travis Dick, Sergei Vassilvitskii
ICLR 2023 Meta-Learning in Games Keegan Harris, Ioannis Anagnostides, Gabriele Farina, Mikhail Khodak, Steven Wu, Tuomas Sandholm
FnTML 2021 Advances and Open Problems in Federated Learning Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
NeurIPS 2021 Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, Ameet Talwalkar
ICLR 2021 Geometry-Aware Gradient Algorithms for Neural Architecture Search Liam Li, Mikhail Khodak, Nina Balcan, Ameet Talwalkar
ICLR 2021 Initialization and Regularization of Factorized Neural Layers Mikhail Khodak, Neil A. Tenenholtz, Lester Mackey, Nicolo Fusi
NeurIPS 2021 Learning-to-Learn Non-Convex Piecewise-Lipschitz Functions Maria-Florina F Balcan, Mikhail Khodak, Dravyansh Sharma, Ameet Talwalkar
NeurIPS 2021 Rethinking Neural Operations for Diverse Tasks Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, Ameet Talwalkar
ICML 2020 A Sample Complexity Separation Between Non-Convex and Convex Meta-Learning Nikunj Saunshi, Yi Zhang, Mikhail Khodak, Sanjeev Arora
ICLR 2020 Differentially Private Meta-Learning Jeffrey Li, Mikhail Khodak, Sebastian Caldas, Ameet Talwalkar
ICML 2019 A Theoretical Analysis of Contrastive Unsupervised Representation Learning Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, Hrishikesh Khandeparkar
NeurIPS 2019 Adaptive Gradient-Based Meta-Learning Methods Mikhail Khodak, Maria-Florina F Balcan, Ameet S Talwalkar
ICML 2019 Provable Guarantees for Gradient-Based Meta-Learning Maria-Florina Balcan, Mikhail Khodak, Ameet Talwalkar
ICLR 2018 A Compressed Sensing View of Unsupervised Text Embeddings, Bag-of-N-Grams, and LSTMs Sanjeev Arora, Mikhail Khodak, Nikunj Saunshi, Kiran Vodrahalli