ML Anthology
Authors
Search
About
Kim, Seyoung
16 publications
AISTATS
2023
Factorial SDE for Multi-Output Gaussian Process Regression
Daniel P. Jeong
,
Seyoung Kim
AISTATS
2022
Doubly Mixed-Effects Gaussian Process Regression
Jun Ho Yoon
,
Daniel P. Jeong
,
Seyoung Kim
JMLR
2022
EiGLasso for Scalable Sparse Kronecker-Sum Inverse Covariance Estimation
Jun Ho Yoon
,
Seyoung Kim
UAI
2020
EiGLasso: Scalable Estimation of Cartesian Product of Sparse Inverse Covariance Matrices
Jun Ho Yoon
,
Seyoung Kim
AISTATS
2020
Multi-Level Gaussian Graphical Models Conditional on Covariates
Gi Bum Kim
,
Seyoung Kim
AISTATS
2016
Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models
Calvin McCarter
,
Seyoung Kim
NeurIPS
2014
On Sparse Gaussian Chain Graph Models
Calvin McCarter
,
Seyoung Kim
NeurIPS
2013
A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables
Jing Xiang
,
Seyoung Kim
AISTATS
2012
Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization
Kyung-Ah Sohn
,
Seyoung Kim
UAI
2011
Smoothing Proximal Gradient Method for General Structured Sparse Learning
Xi Chen
,
Qihang Lin
,
Seyoung Kim
,
Jaime G. Carbonell
,
Eric P. Xing
ICML
2010
Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity
Seyoung Kim
,
Eric P. Xing
NeurIPS
2009
Heterogeneous Multitask Learning with Joint Sparsity Constraints
Xiaolin Yang
,
Seyoung Kim
,
Eric P. Xing
UAI
2008
Feature Selection via Block-Regularized Regression
Seyoung Kim
,
Eric P. Xing
NeurIPS
2006
Hierarchical Dirichlet Processes with Random Effects
Seyoung Kim
,
Padhraic Smyth
JMLR
2006
Segmental Hidden Markov Models with Random Effects for Waveform Modeling
Seyoung Kim
,
Padhraic Smyth
UAI
2004
Modeling Waveform Shapes with Random E Ects Segmental Hidden Markov Models
Seyoung Kim
,
Padhraic Smyth
,
Stefan Luther