Kim, Seyoung

16 publications

AISTATS 2023 Factorial SDE for Multi-Output Gaussian Process Regression Daniel P. Jeong, Seyoung Kim
AISTATS 2022 Doubly Mixed-Effects Gaussian Process Regression Jun Ho Yoon, Daniel P. Jeong, Seyoung Kim
JMLR 2022 EiGLasso for Scalable Sparse Kronecker-Sum Inverse Covariance Estimation Jun Ho Yoon, Seyoung Kim
UAI 2020 EiGLasso: Scalable Estimation of Cartesian Product of Sparse Inverse Covariance Matrices Jun Ho Yoon, Seyoung Kim
AISTATS 2020 Multi-Level Gaussian Graphical Models Conditional on Covariates Gi Bum Kim, Seyoung Kim
AISTATS 2016 Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models Calvin McCarter, Seyoung Kim
NeurIPS 2014 On Sparse Gaussian Chain Graph Models Calvin McCarter, Seyoung Kim
NeurIPS 2013 A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables Jing Xiang, Seyoung Kim
AISTATS 2012 Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization Kyung-Ah Sohn, Seyoung Kim
UAI 2011 Smoothing Proximal Gradient Method for General Structured Sparse Learning Xi Chen, Qihang Lin, Seyoung Kim, Jaime G. Carbonell, Eric P. Xing
ICML 2010 Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity Seyoung Kim, Eric P. Xing
NeurIPS 2009 Heterogeneous Multitask Learning with Joint Sparsity Constraints Xiaolin Yang, Seyoung Kim, Eric P. Xing
UAI 2008 Feature Selection via Block-Regularized Regression Seyoung Kim, Eric P. Xing
NeurIPS 2006 Hierarchical Dirichlet Processes with Random Effects Seyoung Kim, Padhraic Smyth
JMLR 2006 Segmental Hidden Markov Models with Random Effects for Waveform Modeling Seyoung Kim, Padhraic Smyth
UAI 2004 Modeling Waveform Shapes with Random E Ects Segmental Hidden Markov Models Seyoung Kim, Padhraic Smyth, Stefan Luther