ML Anthology
Authors
Search
About
Kim, Yongdai
19 publications
ICML
2025
Fair Clustering via Alignment
Kunwoong Kim
,
Jihu Lee
,
Sangchul Park
,
Yongdai Kim
TMLR
2025
Fairness Through Matching
Kunwoong Kim
,
Insung Kong
,
Jongjin Lee
,
Minwoo Chae
,
Sangchul Park
,
Yongdai Kim
NeurIPS
2025
Knowledge Distillation of Uncertainty Using Deep Latent Factor Model
Sehyun Park
,
Jongjin Lee
,
Yunseop Shin
,
Ilsang Ohn
,
Yongdai Kim
JMLR
2025
Posterior Concentrations of Fully-Connected Bayesian Neural Networks with General Priors on the Weights
Insung Kong
,
Yongdai Kim
CVPR
2025
TAROT: Towards Essentially Domain-Invariant Robustness with Theoretical Justification
Dongyoon Yang
,
Jihu Lee
,
Yongdai Kim
ICML
2025
Tensor Product Neural Networks for Functional ANOVA Model
Seokhun Park
,
Insung Kong
,
Yongchan Choi
,
Chanmoo Park
,
Yongdai Kim
AAAI
2024
IOFM: Using the Interpolation Technique on the Over-Fitted Models to Identify Clean-Annotated Samples
Dongha Kim
,
Yongchan Choi
,
Kunwoong Kim
,
Ilsang Ohn
,
Yongdai Kim
ICML
2024
ODIM: Outlier Detection via Likelihood of Under-Fitted Generative Models
Dongha Kim
,
Jaesung Hwang
,
Jongjin Lee
,
Kunwoong Kim
,
Yongdai Kim
JMLR
2023
A Likelihood Approach to Nonparametric Estimation of a Singular Distribution Using Deep Generative Models
Minwoo Chae
,
Dongha Kim
,
Yongdai Kim
,
Lizhen Lin
ICML
2023
Covariate Balancing Using the Integral Probability Metric for Causal Inference
Insung Kong
,
Yuha Park
,
Joonhyuk Jung
,
Kwonsang Lee
,
Yongdai Kim
ICCV
2023
Enhancing Adversarial Robustness in Low-Label Regime via Adaptively Weighted Regularization and Knowledge Distillation
Dongyoon Yang
,
Insung Kong
,
Yongdai Kim
ICML
2023
Improving Adversarial Robustness by Putting More Regularizations on Less Robust Samples
Dongyoon Yang
,
Insung Kong
,
Yongdai Kim
ICML
2023
Masked Bayesian Neural Networks : Theoretical Guarantee and Its Posterior Inference
Insung Kong
,
Dongyoon Yang
,
Jongjin Lee
,
Ilsang Ohn
,
Gyuseung Baek
,
Yongdai Kim
ICML
2022
Learning Fair Representation with a Parametric Integral Probability Metric
Dongha Kim
,
Kunwoong Kim
,
Insung Kong
,
Ilsang Ohn
,
Yongdai Kim
AAAI
2021
Kernel-Convoluted Deep Neural Networks with Data Augmentation
Minjin Kim
,
Young-geun Kim
,
Dongha Kim
,
Yongdai Kim
,
Myunghee Cho Paik
AISTATS
2020
On Casting Importance Weighted Autoencoder to an EM Algorithm to Learn Deep Generative Models
Dongha Kim
,
Jaesung Hwang
,
Yongdai Kim
ECML-PKDD
2016
An Online Gibbs Sampler Algorithm for Hierarchical Dirichlet Processes Prior
Yongdai Kim
,
Minwoo Chae
,
Kuhwan Jeong
,
Byungyup Kang
,
Hyoju Chung
JMLR
2012
Consistent Model Selection Criteria on High Dimensions
Yongdai Kim
,
Sunghoon Kwon
,
Hosik Choi
ICML
2004
Gradient LASSO for Feature Selection
Yongdai Kim
,
Jinseog Kim