ML Anthology
Authors
Search
About
Kingma, Diederik P.
18 publications
ICLR
2025
Adam-Mini: Use Fewer Learning Rates to Gain More
Yushun Zhang
,
Congliang Chen
,
Ziniu Li
,
Tian Ding
,
Chenwei Wu
,
Diederik P Kingma
,
Yinyu Ye
,
Zhi-Quan Luo
,
Ruoyu Sun
NeurIPS
2024
EM Distillation for One-Step Diffusion Models
Sirui Xie
,
Zhisheng Xiao
,
Diederik P. Kingma
,
Tingbo Hou
,
Ying Nian Wu
,
Kevin Murphy
,
Tim Salimans
,
Ben Poole
,
Ruiqi Gao
NeurIPSW
2022
On Distillation of Guided Diffusion Models
Chenlin Meng
,
Ruiqi Gao
,
Diederik P Kingma
,
Stefano Ermon
,
Jonathan Ho
,
Tim Salimans
ICLR
2021
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao
,
Yang Song
,
Ben Poole
,
Ying Nian Wu
,
Diederik P Kingma
ICLR
2021
Score-Based Generative Modeling Through Stochastic Differential Equations
Yang Song
,
Jascha Sohl-Dickstein
,
Diederik P Kingma
,
Abhishek Kumar
,
Stefano Ermon
,
Ben Poole
FnTML
2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
,
Max Welling
NeurIPS
2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
,
Prafulla Dhariwal
ICLR
2018
Learning Sparse Neural Networks Through L_0 Regularization
Christos Louizos
,
Max Welling
,
Diederik P. Kingma
ICLR
2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
,
Andrej Karpathy
,
Xi Chen
,
Diederik P. Kingma
ICLR
2017
Variational Lossy Autoencoder
Xi Chen
,
Diederik P. Kingma
,
Tim Salimans
,
Yan Duan
,
Prafulla Dhariwal
,
John Schulman
,
Ilya Sutskever
,
Pieter Abbeel
NeurIPS
2016
Improved Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
,
Tim Salimans
,
Rafal Jozefowicz
,
Xi Chen
,
Ilya Sutskever
,
Max Welling
NeurIPS
2016
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
,
Diederik P. Kingma
ICLR
2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
,
Jimmy Ba
NeurIPS
2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
,
Tim Salimans
,
Max Welling
ICLR
2015
Variational Recurrent Auto-Encoders
Otto Fabius
,
Joost R. van Amersfoort
,
Diederik P. Kingma
ICLR
2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
,
Max Welling
NeurIPS
2014
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
,
Shakir Mohamed
,
Danilo Jimenez Rezende
,
Max Welling
NeurIPS
2010
Regularized Estimation of Image Statistics by Score Matching
Diederik P. Kingma
,
Yann L. Cun