ML Anthology
Authors
Search
About
Kirschner, Johannes
15 publications
AISTATS
2023
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
,
Seyed Alireza Bakhtiari
,
Johannes Kirschner
,
Matej Jusup
,
Ilija Bogunovic
,
Csaba Szepesvári
JMLR
2023
Linear Partial Monitoring for Sequential Decision Making: Algorithms, Regret Bounds and Applications
Johannes Kirschner
,
Tor Lattimore
,
Andreas Krause
NeurIPS
2023
Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-Off
Zichen Zhang
,
Johannes Kirschner
,
Junxi Zhang
,
Francesco Zanini
,
Alex Ayoub
,
Masood Dehghan
,
Dale Schuurmans
ICLR
2023
Near-Optimal Policy Identification in Active Reinforcement Learning
Xiang Li
,
Viraj Mehta
,
Johannes Kirschner
,
Ian Char
,
Willie Neiswanger
,
Jeff Schneider
,
Andreas Krause
,
Ilija Bogunovic
NeurIPS
2023
Regret Minimization via Saddle Point Optimization
Johannes Kirschner
,
Alireza Bakhtiari
,
Kushagra Chandak
,
Volodymyr Tkachuk
,
Csaba Szepesvari
COLT
2021
Asymptotically Optimal Information-Directed Sampling
Johannes Kirschner
,
Tor Lattimore
,
Claire Vernade
,
Csaba Szepesvari
ICML
2021
Bias-Robust Bayesian Optimization via Dueling Bandits
Johannes Kirschner
,
Andreas Krause
ALT
2021
Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback
Marc Jourdan
,
Mojmír Mutný
,
Johannes Kirschner
,
Andreas Krause
AISTATS
2020
Distributionally Robust Bayesian Optimization
Johannes Kirschner
,
Ilija Bogunovic
,
Stefanie Jegelka
,
Andreas Krause
AAAI
2020
Experimental Design for Optimization of Orthogonal Projection Pursuit Models
Mojmir Mutny
,
Johannes Kirschner
,
Andreas Krause
COLT
2020
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
,
Tor Lattimore
,
Andreas Krause
ICML
2019
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
,
Mojmir Mutny
,
Nicole Hiller
,
Rasmus Ischebeck
,
Andreas Krause
ICLR
2019
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
,
Johannes Kirschner
,
Felix Berkenkamp
,
Andreas Krause
NeurIPS
2019
Stochastic Bandits with Context Distributions
Johannes Kirschner
,
Andreas Krause
COLT
2018
Information Directed Sampling and Bandits with Heteroscedastic Noise
Johannes Kirschner
,
Andreas Krause