ML Anthology
Authors
Search
About
Klein, Aaron
22 publications
ICML
2025
Hyperband-Based Bayesian Optimization for Black-Box Prompt Selection
Lennart Schneider
,
Martin Wistuba
,
Aaron Klein
,
Jacek Golebiowski
,
Giovanni Zappella
,
Felice Antonio Merra
FnTML
2025
Hyperparameter Optimization in Machine Learning
Luca Franceschi
,
Michele Donini
,
Valerio Perrone
,
Aaron Klein
,
Cédric Archambeau
,
Matthias W. Seeger
,
Massimiliano Pontil
,
Paolo Frasconi
AutoML
2025
Obeying the Order: Introducing Ordered Transfer Hyperparameter Optimization
Sigrid Passano Hellan
,
Huibin Shen
,
Francois-Xavier Aubet
,
David Salinas
,
Aaron Klein
NeurIPS
2024
HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models
Rhea Sanjay Sukthanker
,
Arber Zela
,
Benedikt Staffler
,
Aaron Klein
,
Lennart Purucker
,
Jörg K. H. Franke
,
Frank Hutter
NeurIPSW
2024
Large Language Model Compression with Neural Architecture Search
Rhea Sanjay Sukthanker
,
Benedikt Staffler
,
Frank Hutter
,
Aaron Klein
TMLR
2024
Structural Pruning of Pre-Trained Language Models via Neural Architecture Search
Aaron Klein
,
Jacek Golebiowski
,
Xingchen Ma
,
Valerio Perrone
,
Cedric Archambeau
NeurIPSW
2024
Warmstarting for Scaling Language Models
Neeratyoy Mallik
,
Maciej Janowski
,
Johannes Hog
,
Herilalaina Rakotoarison
,
Aaron Klein
,
Josif Grabocka
,
Frank Hutter
ICML
2023
Optimizing Hyperparameters with Conformal Quantile Regression
David Salinas
,
Jacek Golebiowski
,
Aaron Klein
,
Matthias Seeger
,
Cedric Archambeau
AutoML
2022
Automatic Termination for Hyperparameter Optimization
Anastasia Makarova
,
Huibin Shen
,
Valerio Perrone
,
Aaron Klein
,
Jean Baptiste Faddoul
,
Andreas Krause
,
Matthias Seeger
,
Cedric Archambeau
AutoML
2022
Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research
David Salinas
,
Matthias Seeger
,
Aaron Klein
,
Valerio Perrone
,
Martin Wistuba
,
Cedric Archambeau
AISTATS
2021
Hyperparameter Transfer Learning with Adaptive Complexity
Samuel Horváth
,
Aaron Klein
,
Peter Richtarik
,
Cedric Archambeau
ICML
2021
BORE: Bayesian Optimization by Density-Ratio Estimation
Louis C Tiao
,
Aaron Klein
,
Matthias W Seeger
,
Edwin V. Bonilla
,
Cedric Archambeau
,
Fabio Ramos
ICMLW
2021
Dynamic Pruning of a Neural Network via Gradient Signal-to-Noise Ratio
Julien Niklas Siems
,
Aaron Klein
,
Cedric Archambeau
,
Maren Mahsereci
NeurIPS
2019
Meta-Surrogate Benchmarking for Hyperparameter Optimization
Aaron Klein
,
Zhenwen Dai
,
Frank Hutter
,
Neil Lawrence
,
Javier Gonzalez
ICML
2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
,
Aaron Klein
,
Eric Christiansen
,
Esteban Real
,
Kevin Murphy
,
Frank Hutter
ICML
2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
,
Aaron Klein
,
Frank Hutter
ECCV
2018
Uncertainty Estimates and Multi-Hypotheses Networks for Optical Flow
Eddy Ilg
,
Ozgun Cicek
,
Silvio Galesso
,
Aaron Klein
,
Osama Makansi
,
Frank Hutter
,
Thomas Brox
AISTATS
2017
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
,
Stefan Falkner
,
Simon Bartels
,
Philipp Hennig
,
Frank Hutter
ICLR
2017
Learning Curve Prediction with Bayesian Neural Networks
Aaron Klein
,
Stefan Falkner
,
Jost Tobias Springenberg
,
Frank Hutter
NeurIPS
2016
Bayesian Optimization with Robust Bayesian Neural Networks
Jost Tobias Springenberg
,
Aaron Klein
,
Stefan Falkner
,
Frank Hutter
AutoML
2016
Towards Automatically-Tuned Neural Networks
Hector Mendoza
,
Aaron Klein
,
Matthias Feurer
,
Jost Tobias Springenberg
,
Frank Hutter
NeurIPS
2015
Efficient and Robust Automated Machine Learning
Matthias Feurer
,
Aaron Klein
,
Katharina Eggensperger
,
Jost Springenberg
,
Manuel Blum
,
Frank Hutter